Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Healthcare Infection Healthcare Infection Society
Official Journal of the Australasian College for Infection Prevention and Control
RESEARCH ARTICLE

Reducing the risk of surgical site infections: embracing basic and innovative risk reduction strategies

Charles E. Edmiston Jr Jr A B C D , Candace J. Krepel A C , Patti J. Wilson B , Bonnie F. Grahn B , Patricia J. Sadenwasser B , Donna L. Welter B and Gary R. Seabrook A C
+ Author Affiliations
- Author Affiliations

A Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

B Infection Control Section, Froedtert Hospital, Milwaukee, Wisconsin 53226, USA.

C Surgical Microbiology Research Laboratory, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

D Corresponding author. Email: edmiston@mcw.edu

Healthcare Infection 13(4) 121-129 https://doi.org/10.1071/HI08033
Published: 5 December 2008

Abstract

Surgical-site infections (SSIs) are associated with significant morbidity and mortality, especially in high-risk patient populations. The probability of a patient developing a postoperative SSI is influenced by selected intrinsic and extrinsic risk factors present at the time of surgery. It is estimated that between 750 000 and 1 000 000 SSIs occur in the USA each year, utilising 3.7 million extra hospital days and costing more than US$1.6 billion in excess hospital charges each year. The cornerstones for reducing the risk of SSI include exquisite surgical technique, timely and appropriate antimicrobial prophylaxis, effective and persistent skin antisepsis and identification of adjunctive strategies for reducing wound contamination while promoting wound healing. Historically, SSI surveillance was conducted in a retrospective manner, however efforts to implement a timely and effective infection control program requires a prospective interdisciplinary system for: (i) identifying selective and non-selective SSIs; and (ii) rapid implementation of appropriate interventional strategies designed to mitigate risk. In the USA, national efforts to reduce the morbidity and mortality of SSIs has resulted in the adoption of the Surgical Care Improvement Project, which focuses on four evidenced-based interventional strategies including glycaemic control in cardiothoracic and vascular patients, appropriate hair removal, timely and appropriate antimicrobial prophylaxis, and maintenance of normothermia in colorectal patients. Efforts to reduce the risk of SSI in the future will require a focussed, multidisciplinary commitment, embracing sentinel evidence-based strategies in addition to novel, yet effective, innovative risk reduction technologies.


References


[1] Graves EJ,  Gillum BS. Detailed diagnoses and procedures, National Hospital Discharge Survey, 1994. Vital Health Stat 13. 1997;: 1–145.


[2] Emori TG,  Gaynes RP. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 1993; 6 428–32.
CAS | PubMed |

[3] Zinn CS,  Westh H,  Rosdahl VT. An international multicenter study of antimicrobial resistance and typing of hospital Staphylococcus aureus isolates from 21 laboratories in 19 countries or states. Microb Drug Resist 2004; 10 160–8.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[4] Kuehnert MJ,  Hill HA,  Kupronis BA,  Tokars JI,  Solomon SL,  Jernigan DB, et al. Methicillin-resistant Staphylococcus aureus hospitalizations, United States. Emerg Infect Dis 2005; 11 868–72.
PubMed |

[5] Engemann JJ,  Carmeli Y,  Cosgrove SE,  Fowler VG,  Bronstein MZ,  Trivette SL, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 2003; 36 592–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[6] Cosgrove SE,  Sakoulas G,  Perencevich EN,  Schwaber MJ,  Karchmer AW,  Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta analysis. Clin Infect Dis 2003; 36 53–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[7] Mangram AJ,  Horan TC,  Pearson ML,  Silver LC,  Jarvis WR,  Centers for Disease Control and Prevention (CDC) and the Hospital Infection Control Practices Advisory Committee Guideline for prevention of surgical site infection, 1999. Am J Infect Control 1999; 27 97–132.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[8] Lin DM . Surgical care improvement project: improve performance, reduce complications, and comply with CMS. Marblehead, MA: HC Pro, Inc; 2007.

[9] Bratzler DW,  Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Prevention Project. Clin Infect Dis 2004; 38 1706–15.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[10] Itani KMF,  Wilson SE,  Awad SS,  Jensen EH,  Finn TS,  Abramson MA. Ertapenem versus cefotetan prophylaxis in elective colorectal surgery. N Engl J Med 2006; 355 2640–51.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[11] Zerr KJ,  Furnary AP,  Grunkemeier GL,  Bookin S,  Kanhere V,  Starr A. Glucose control lowers the risk of wound infection in diabetics after open heart operations. Ann Thorac Surg 1997; 63 356–61.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[12] van den Berghe G,  Wouters P,  Weekers F,  Verwaest C,  Bruyninckx F,  Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001; 345 1359–67.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[13] Latham R,  Lancaster AD,  Covington JF,  Pirolo JS,  Thomas CS. The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. Infect Control Hosp Epidemiol 2001; 22 607–12.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[14] Kurz A,  Sessler DI,  Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med 1996; 334 1209–16.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[15] Ko W,  Lazenby WD,  Zelano JA,  Isom OW,  Krieger KH. Effects of shaving methods and intraoperative irrigation on suppurative mediastinitis after bypass operations. Ann Thorac Surg 1992; 53 301–5.
CAS | PubMed |

[16] Horgan MA,  Piatt JH. Shaving of the scalp may increase the rate of infection in CSF shunt surgery. Pediatr Neurosurg 1997; 26 180–4.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[17] Ferman JH. Payments will be based on quality not quantity. CMS plans to stop paying for secondary infections. Healthc Exec 2008; 23 52–4.
PubMed |

[18] Centers for Medicare and Medicaid Services (CMS), HHS Medicare program; hospital outpatient prospective payment system and CY 2007 payment rates; CY 2007 update to the ambulatory surgical center covered procedures list; Medicare administrative contractors; and reporting hospital quality data for FY 2008 inpatient prospective payment system annual payment update program--HCAHPS survey, SCIP, and mortality. Final rule with comment period and final rule. Fed Regist 2006; 71 67959–8401.
PubMed |

[19] Edmiston CE,  Seabrook GR,  Johnson CJ,  Paulson DS,  Beausoleil C. Comparison of a new and innovative 2% chlorhexidine impregnated cloth with 4% chlorhexidine as topical antiseptic for preparation of the skin prior to surgery. Am J Infect Control 2007; 35 89–96.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[20] Schaal KP. Medical and microbiological problems arising from airborne infection in hospitals. J Hosp Infect 1991; 18 S451–9.
Crossref | GoogleScholarGoogle Scholar |

[21] Webster J , Osborne S . Preoperative bathing or showering with skin antiseptics to prevent surgical site infection (review). The Cochrane Collaboration. London: J Wiley & Sons; 2006. pp. 1–21.

[22] Edmiston CE,  Krepel CJ,  Seabrook GR,  Lewis BD,  Brown KR,  Towne JB. The preoperative shower revisited: can high topical antiseptic levels be achieved on the skin surface prior to surgical admission? J Am Coll Surg 2008; 207 233–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[23] Pottinger JM,  Starks SE,  Steelman VM. Skin preparations. Perioperative Nurs Clinics 2006; 1 203–10.
Crossref | GoogleScholarGoogle Scholar |

[24] Zvonar RK,  Bush P,  Roth B. Practice changes to improve delivery of surgical antibiotic prophylaxis. Healthc Q 2008; 11 141–4.
PubMed |

[25] Edmiston CE,  Krepel C,  Kelly H,  Larson J,  Andris D,  Hennen C, et al. Perioperative antimicrobial prophylaxis in the gastric bypass patient: do we achieve therapeutic levels? Surgery 2004; 136 738–47.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[26] Ritter MS. Operating room environment. Clin Orthop Relat Res 1999; 369 103–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[27] Longmire W,  Altemeier WA,  Blades B,  Ravdin RG,  Grotzinger PJ,  Brachman PS, et al. Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors. Ann Surg 1964; 160 1–92.


[28] Clarke MT,  Lee PT,  Robert CP,  Gray J,  Keene GS,  Rushton N, et al. Contamination of primary total hip replacement in standard and ultraclean operating theaters detected by polymerase chain reaction. Acta Orthop Scand 2004; 75 544–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[29] Hasanadka R , Seabrook GR , Edmiston CE . Vascular graft infections. In: Rello J, Kollef M, Diaz M, Rodrigues A (eds.) Critical care infectious diseases, 2nd edition. Boston: Kluwer Academic Publishers; 2007. pp. 531–41.

[30] Levy ME,  Schmitt DD,  Edmiston CE,  Bandyk DF,  Krepel CJ,  Seabrook GR, et al. Sequential analysis of staphylococcal colonization by body surface cultured on patients undergoing vascular surgery. J Clin Microbiol 1990; 28 664–9.
CAS | PubMed |

[31] Faibis F,  Laporte C,  Fiacre A,  Delisse C,  Lina G,  Demachy M-C, et al. An outbreak of methicillin-resistant Staphylococcus aureus surgical site infections initiated by a healthcare worker with chronic sinusitis. Infect Control Hosp Epidemiol 2005; 26 213–15.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[32] Edmiston CE,  Seabrook GR,  Cambria RA,  Brown KR,  Lewis BD,  Sommers JR, et al. Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infections? Surgery 2005; 138 572–88.


[33] Sherertz RJ,  Reagan DR,  Hampton KD,  Robertson KL,  Streed SA,  Hoen HM, et al. A cloud adult: the Staphylococcus aureus-virus interaction revisited. Ann Intern Med 1996; 124 539–47.
PubMed |

[34] Bischoff WE,  Bassetti S,  Bassetti-Wyss BA,  Wallis ML,  Tucker BK,  Reboussin BA, et al. Airborne dispersal as a novel transmission route of coagulase-negative staphylococci: interaction between coagulase negative staphylococci and rhinovirus. Infect Control Hosp Epidemiol 2004; 25 504–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[35] Beckingham W,  Senanayake S,  Collignon P,  McKenzie G. Is methicillin-resistant Staphylococcus aureus aerosolized when healthcare workers carry out activities for patients. Healthc Infect 2008; 13 77–82.
Crossref | GoogleScholarGoogle Scholar |

[36] Crnich CJ,  Maki DG. Are antimicrobial-impregnated catheters effective? Don’t throw the baby out with the bath water. Clin Infect Dis 2004; 38 1287–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[37] Stensballe J,  Tvede M,  Looms D,  Lippert FK,  Dahl B,  Tonnesen E, et al. Infection risk with nitrofurazone-impregnated urinary catheters in trauma patients: a randomized study. Ann Intern Surg 2007; 147 285–93.


[38] Paddock HN,  Fabia R,  Giles S,  Hayes J,  Lowell W,  Adams D, et al. A silver-impregnated antimicrobial dressing reduces hospital costs for pediatric burn patients. J Pediatr Surg 2007; 42 211–13.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[39] Walenkamp GH,  Keijn LL,  de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1–12 years. Acta Orthop Scand 1998; 69 518–22.
CAS | PubMed |

[40] Darouiche RO,  Mansouri MD,  Zakarevicz D,  AlSharif A,  Landon GC. In vivo efficacy of antimicrobial-coated devices. J Bone Joint Surg Am 2007; 89 792–7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[41] Carson CC. Efficacy of antibiotic impregnation of inflatable penile prostheses in decreasing infection in original implant. J Urol 2004; 171 1611–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[42] Rodeheaver GT,  Kurtz LD,  Belamy WT,  Farrs H,  Edlich RB. Biocidal braided sutures. Arch Surg 1983; 118 322–7.
CAS | PubMed |

[43] Uff CR,  Scott AD,  Pockley AG,  Phillips RK. Influence of soluble suture factors on in vitro macrophage function. Biomaterials 1995; 16 355–60.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[44] Scher KS,  Bernstein JM,  Jones CW. Infectivity of vascular sutures. Am Surg 1985; 51 577–9.
CAS | PubMed |

[45] Shuhaiber H,  Chugh T,  Burns G. In vitro adherence of bacteria to sutures in cardiac surgery. J Cardiovasc Surg (Torino) 1989; 30 749–53.
CAS | PubMed |

[46] Storch M,  Perry LC,  Davidson JM,  Ward JJ. A 28-day study of the effect of coated Vicryl Plus® antibacterial suture on wound healing in guinea pig linear skin wounds. Surg Infect (Larchmt) 2002; 3 S89–98.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[47] Ford HR,  Jones P,  Gaines B,  Reblock K,  Simpkins DL. Intraoperative handling and wound healing: controlled clinical trial comparing coated Vicryl Plus® antibacterial suture (coated polyglactin 910 suture with triclosan) with coated Vicryl® suture (coated polyglactin 910 suture). Surg Infect (Larchmt) 2005; 6 313–21.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[48] Jones RD,  Jampani HB,  Newman JL,  Lee AS. Triclosan: a review of effectiveness and safety in health care setting. Am J Infect Control 2000; 28 184–96.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[49] Suller MTE,  Russell AD. Triclosan and antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 2000; 46 11–8.
Crossref | GoogleScholarGoogle Scholar | CAS |

[50] Aiello AE,  Marshall B,  Levy SB,  Dell-Latta P,  Larson E. Relationship between triclosan and susceptibility of bacteria isolates from hands in the community. Antimicrob Agents Chemother 2004; 48 2973–9.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[51] Edmiston CE,  Goheen MP,  Krepel C,  Seabrook GR,  Johnson CP,  Lewis BD, et al. Bacterial adherence to surgical sutures: is there a role for antibacterial-coated sutures in reducing the risk of surgical site infections? J Am Coll Surg 2006; 203 481–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[52] Fleck T,  Moidl R,  Blacky A,  Fleck M,  Wolner E,  Grabenwoger M, et al. Triclosan-coated sutures for the reduction of sternal wound infections: economic considerations. Ann Thorac Surg 2007; 84 232–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[53] Ammirati M,  Raimondi AJ. Cerebrospinal fluid shunt infections in children. A study on the relationship between the etiology of hydrocephalus, age at the time of shunt placement, and infection rate. Childs Nerv Syst 1987; 3 106–9.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

[54] McGirt MJ,  Zaas A,  Fuchs HE,  George TM,  Kaye K,  Sexton DJ. Risk factors for pediatric ventriculoperitoneal shunt infection and predictors of infectious pathogens. Clin Infect Dis 2003; 36 858–62.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[55] Rozzelle CJ,  Leonardo J,  Li V. Antimicrobial suture wound closure for cerebrospinal fluid shunt surgery: a prospective, double-blinded, randomized controlled trial. J Neurosurg Pediatrics 2008; 2 111–17.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[56] Blumetti J,  Luu M,  Sarosi G,  Hartless K,  McFarlin J,  Parker B, et al. Surgical site infections after colorectal surgery: do risk factors vary depending on the type of infection considered? Surgery 2007; 142 704–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[57] Indelicato D,  Grobmyer SR,  Newlin H,  Morris CG,  Haigh LS,  Copeland EM, et al. Association between operative closure type and acute infection, local recurrence, and disease surveillance in patients undergoing breast conserving therapy for early-stage breast cancer. Surgery 2007; 141 645–53.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[58] Alves A,  Panis Y,  Bouhnik Y,  Pocard M,  Vicaut E,  Valleur P. Risk factors for intra-abdominal septic complications after a first ileocecal resection for Crohns disease: a multivariate analysis in 161 consecutive patients. Dis Colon Rectum 2007; 50 331–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[59] Opøien HK,  Valbø A,  Grinde-Andersen A,  Walberg M. Post-cesarean surgical site infections according to CDC standards: rates and risk factors. A prospective cohort study. Acta Obstet Gynecol Scand 2007; 86 1097–102.
Crossref | GoogleScholarGoogle Scholar | PubMed |

[60] McKibben L,  Horan T,  Tokars JI,  Fowler G,  Cardo DM,  Pearson ML, et al. Guidance on public reporting of healthcare-associated infections: recommendations of the Healthcare Infection Control Practices Advisory Committee. Am J Infect Control 2005; 33 217–26.
Crossref | GoogleScholarGoogle Scholar | PubMed |