Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Identification of novel stress-responsive biomarkers from gene expression datasets in tomato roots

Almudena Ferrández-Ayela A , Ana Belén Sánchez-García A , Cristina Martínez-Andújar B , Zoltan Kevei C , Miriam L. Gifford D , Andrew J. Thompson C , Francisco Pérez-Alfocea B and José Manuel Pérez-Pérez A E
+ Author Affiliations
- Author Affiliations

A Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.

B Departamento de Nutrición Vegetal. CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain.

C Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.

D School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.

E Corresponding author. Email: jmperez@umh.es

Functional Plant Biology 43(8) 783-796 https://doi.org/10.1071/FP15385
Submitted: 23 December 2015  Accepted: 18 April 2016   Published: 17 May 2016

Abstract

Abiotic stresses such as heat, drought or salinity have been widely studied individually. Nevertheless, in the nature and in the field, plants and crops are commonly exposed to a different combination of stresses, which often result in a synergistic response mediated by the activation of several molecular pathways that cannot be inferred from the response to each individual stress. By screening microarray data obtained from different plant species and under different stresses, we identified several conserved stress-responsive genes whose expression was differentially regulated in tomato (Solanum lycopersicum L.) roots in response to one or several stresses. We validated 10 of these genes as reliable biomarkers whose expression levels are related to different signalling pathways involved in adaptive stress responses. In addition, the genes identified in this work could be used as general salt-stress biomarkers to rapidly evaluate the response of salt-tolerant cultivars and wild species for which sufficient genetic information is not yet available.

Additional keywords: abiotic stress, gene expression profiling, stress biomarkers, salt-stress responsive genes.


References

Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress ans abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology 55, 178–186.
Influence of drought, salt stress ans abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Krt70%3D&md5=89f4af2257698669c5091bccc28d851eCAS |

Almeida P, Feron R, de Boer GJ, de Boer AH (2014) Role of Na+, K+, Cl–, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato. AoB Plants 6, plu039
Role of Na+, K+, Cl, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato.Crossref | GoogleScholarGoogle Scholar | 24996430PubMed |

Bagdi DL, Shaw BP, Sahu BB, Purohit GK (2015) Real time PCR expression analysis of gene encoding p5cs enzyme and proline metabolism under NaCI salinity in rice. Journal of Environmental Biology 36, 955–961.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets – update. Nucleic Acids Research 41, D991–D995.
NCBI GEO: archive for functional genomics data sets – update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ksb%2FL&md5=320ca56fa57fe9c8343e332d4cf77d3eCAS | 23193258PubMed |

Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) ‘Climate change and water.’ (IPCC Secretariat: Geneva, Switzerland)

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological 57, 289–300.

Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology 139, 790–805.
Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsb7I&md5=a61e0667370aa31a0f5165335c4945deCAS | 16183846PubMed |

Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science 5, 241–246.
The role of calcium and activated oxygens as signals for controlling cross-tolerance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czpsVahtw%3D%3D&md5=e041ba73336fd57e51a2eb13c6b84f1eCAS | 10838614PubMed |

Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochimica et Biophysica Acta 1847, 968–985.
Regulation and function of tetrapyrrole biosynthesis in plants and algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1elsr0%3D&md5=09ba763867fe1a3d34f2567f093cde30CAS | 25979235PubMed |

Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. The Plant Cell 14, 703–711.

Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology 10, 281
Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFA%3D&md5=c7fc93b79936a78bd271cb8b23f0222aCAS | 21167067PubMed |

Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Molecular Plant 4, 25–41.
Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemurc%3D&md5=3d6f82756236895626aa2280cf59b3faCAS | 20924028PubMed |

Dekkers BJ, Willems L, Bassel GW, van Bolderen-Veldkamp RP, Ligterink W, Hilhorst HW, Bentsink L (2012) Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant & Cell Physiology 53, 28–37.
Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFGluw%3D%3D&md5=44de6cbd4c07bc0c7d4729f5b26e1f95CAS |

Du H, Chang Y, Huang F, Xiong L (2014) GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. Journal of Integrative Plant Biology 57, 954–968.
GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.Crossref | GoogleScholarGoogle Scholar |

Estañ MT, Villalta I, Bolarín MC, Carbonell EA, Asins MJ (2009) Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics 118, 305–312.
Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks.Crossref | GoogleScholarGoogle Scholar | 18846361PubMed |

Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. The Plant Cell 23, 3992–4012.
Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFOktQ%3D%3D&md5=8826caec416abfb4c997eff9974da8dfCAS | 22128124PubMed |

Fei Z, Joung JG, Tang X, Zheng Y, Huang M, Lee JM, McQuinn R, Tieman DM, Alba R, Klee HJ, Giovannoni JJ (2011) Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Research 39, D1156–D1163.
Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivF2mur4%3D&md5=54f90b9546c98f9e68f60194257b4082CAS | 20965973PubMed |

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9, 436–442.
Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.Crossref | GoogleScholarGoogle Scholar | 16759898PubMed |

Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research 124, 509–525.
ABA-mediated transcriptional regulation in response to osmotic stress in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVWgtrg%3D&md5=e5f7f02a8cc641edbfc2657cc3c12433CAS | 21416314PubMed |

Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Molecular Biology 26, 1921–1934.
Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktV2gtbw%3D&md5=24b4e43ec114a3cff772d5b050add0daCAS | 7858227PubMed |

Grant MR, Jones JD (2009) Hormone (dis)harmony moulds plant health and disease. Science 324, 750–752.
Hormone (dis)harmony moulds plant health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVelu7o%3D&md5=2307d4e68dbc0709cf754659617dd845CAS | 19423816PubMed |

Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014, 701596
Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.Crossref | GoogleScholarGoogle Scholar | 24804192PubMed |

Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell 24, 2515–2527.
Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wjs7fF&md5=ebcf7bdec3712f8b2d4751df98632344CAS | 22730403PubMed |

Huang J, Lu X, Yan H, Chen S, Zhang W, Huang R, Zheng Y (2012) Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangrove plant. DNA Research 19, 195–207.
Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangrove plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFektrg%3D&md5=92cf15a079367b0846bcc30fb0f534f3CAS | 22351699PubMed |

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264.
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.Crossref | GoogleScholarGoogle Scholar | 12925520PubMed |

Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Developmental Cell 21, 770–782.
Cell identity regulators link development and stress responses in the Arabidopsis root.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKksbvK&md5=5f8f1159dfa0d3dc9bf53c6f735f1d76CAS | 22014526PubMed |

Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z (2009) Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiology 151, 1758–1768.
Plant MetGenMAP: an integrative analysis system for plant systems biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOgtr3K&md5=61a9e95f3f27acb9db19db6677e5edd9CAS | 19819981PubMed |

Kumar R, Agarwal P, Tyagi AK, Sharma AK (2012) Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics 287, 221–235.
Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislSktro%3D&md5=84831ea470ae20f2abaa7383a8baccdaCAS | 22228229PubMed |

Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. The Plant Journal 49, 184–193.
Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWisro%3D&md5=c50f4da3cc461588e720fb56ed2a1578CAS | 17156413PubMed |

Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell 16, 319–331.
The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFKisrY%3D&md5=26670ae1d5d8158dc90056b56dace2a0CAS | 14742872PubMed |

Li J, Besseau S, Törönen P, Sipari N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytologist 200, 457–472.
Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2ntr3E&md5=f4baffc2447606aeae6c7e7ed2aea003CAS | 23815736PubMed |

Luo X, Chen Z, Gao J, Gong Z (2014) Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. The Plant Journal 79, 44–55.
Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVahtbzK&md5=c973b80514e3a40f60581598881c2791CAS | 24738778PubMed |

Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biology 8, R49
Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression.Crossref | GoogleScholarGoogle Scholar | 17408486PubMed |

Madden, T (2013) ‘The NCBI handbook.’

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends in Plant Science 11, 15–19.
Abiotic stress, the field environment and stress combination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVKjsw%3D%3D&md5=4c94697f7fe05499ac12ded3c5b6d58aCAS | 16359910PubMed |

Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology 61, 443–462.
Genetic engineering for modern agriculture: challenges and perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsLc%3D&md5=603baf137fad0c3ca0e2c871193b719fCAS | 20192746PubMed |

Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Functional Plant Biology 30, 461–469.
Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFKit70%3D&md5=26ce3c4a26f22ea7a874e4cb788bd7bcCAS |

Monforte AJ, Asins MJ, Carbonell EA (1997) Salt tolerance in Lycopersicon species V. Does genetic variability at quantitative trait loci affect their analysis? Theoretical and Applied Genetics 95, 284–293.
Salt tolerance in Lycopersicon species V. Does genetic variability at quantitative trait loci affect their analysis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVakuro%3D&md5=c8bb5a54a85f0eb1cde72b386a6f0e45CAS |

Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology 169, 459–468.
Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato.Crossref | GoogleScholarGoogle Scholar | 22226709PubMed |

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
A revised medium for rapid growth and bioassays with tobacco tissue cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksFKm&md5=3e14ca2e1300bcfb216c06e8c97b09daCAS |

Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. The Plant Journal 61, 3–15.
Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovF2lsw%3D%3D&md5=bcc92f7986b4d262bb5ee08b5bf5fa68CAS | 19793078PubMed |

Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant, Cell & Environment 33, 2191–2208.
The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVKk&md5=ab87d817e6b069888d66375713ca9141CAS |

Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany 58, 507–520.
Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWltrs%3D&md5=e769084ab7e3218629ae6f7562965936CAS | 17210988PubMed |

Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5, 308–316.
Networking by small-molecule hormones in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ktL4%3D&md5=505b7f8df952363d1c8adfcc793d71f7CAS | 19377457PubMed |

Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal 31, 319–330.
Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFelsLc%3D&md5=fa9c24efdbddc94c99e7f0e9a80b18e8CAS | 12164811PubMed |

Pruitt, K, Clark, K, Tatusova, T, Mizrachi, I (2011) ‘BioProject Help.’

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Functional & Integrative Genomics 5, 201–207.
Gene expression profiling of potato responses to cold, heat, and salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVajsLjE&md5=4dd8955d6934f523aeaf98cb3d4d012dCAS |

Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8, e79052
Genome-wide identification and expression analysis of aquaporins in tomato.Crossref | GoogleScholarGoogle Scholar | 24260152PubMed |

Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. The Plant Cell 20, 2420–2436.
Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnsLjN&md5=e01e187f759cae0cb992d63c528faa6dCAS | 18805991PubMed |

Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology 130, 1143–1151.
The combined effect of drought stress and heat shock on gene expression in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVOnu7c%3D&md5=4425471692cff47e4f4d5f0bc6680727CAS | 12427981PubMed |

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134, 1683–1696.
When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmsbs%3D&md5=0baaa664c2f7d7712557aff3ce14ce39CAS | 15047901PubMed |

Ruzicka DR, Barrios-Masias FH, Hausmann NT, Jackson LE, Schachtman DP (2010) Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biology 10, 75
Tomato root transcriptome response to a nitrogen-enriched soil patch.Crossref | GoogleScholarGoogle Scholar | 20423508PubMed |

Sagi M, Scazzocchio C, Fluhr R (2002) The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. The Plant Journal 31, 305–317.
The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFelsLY%3D&md5=5004210531d8b6a632b121f4563e77aaCAS | 12164810PubMed |

Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3, 1101–1108.
Analyzing real-time PCR data by the comparative C(T) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemt7c%3D&md5=0a20d169e3896b9c329e983b21ca65d4CAS | 18546601PubMed |

Sham A, Al-Azzawi A, Al-Ameri S, Al-Mahmoud B, Awwad F, Al-Rawashdeh A, Iratni R, AbuQamar S (2014) Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis. PLoS One 9, e113718
Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 25422934PubMed |

Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, Article3

Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant & Cell Physiology 51, 997–1006.
Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVOms7k%3D&md5=8d01f9e1ff3f341b0c166364b8ae9c1dCAS |

The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641.
The tomato genome sequence provides insights into fleshy fruit evolution.Crossref | GoogleScholarGoogle Scholar | 22660326PubMed |

Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35, 753–759.
Proline accumulation in plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aisrfP&md5=8718549a204a5d6c023be19499cdc95eCAS | 18379856PubMed |

West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology 135, 1050–1058.
Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlKis70%3D&md5=b5ce812487e36e9aba1b3dc390f6ebc7CAS | 15181207PubMed |

Wiese J, Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biology 6, 529–536.
Induction of pathogen resistance in barley by abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSjt7k%3D&md5=4344d2032db0232bb3253cc595a0a4c4CAS | 15375723PubMed |

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS One 2, e718
An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets.Crossref | GoogleScholarGoogle Scholar | 17684564PubMed |

Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell 15, 745–759.
Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVektbw%3D&md5=6ffb11db4f666bf0718e32981fd0f8f1CAS | 12615946PubMed |

Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98, 47–55.
Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCntLY%3D&md5=ba91d730c634fddd641e9fac19d08627CAS | 21569837PubMed |

Zawaski C, Busov VB (2014) Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One 9, e86217
Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.Crossref | GoogleScholarGoogle Scholar | 24465967PubMed |

Zhang YP, E ZG, Jiang H, Wang L, Zhou J, Zhu DF (2015) A comparative study of stress-related gene expression under single stress and intercross stress in rice. Genetics and Molecular Research 14, 3702–3717.
A comparative study of stress-related gene expression under single stress and intercross stress in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVCqtLjI&md5=35b3e3f60526ee5048a82f7230be301eCAS | 25966139PubMed |

Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247–273.
Salt and drought stress signal transduction in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbc%3D&md5=4db387a2cb0ebaccf7ceea5cac71befeCAS | 12221975PubMed |