Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Salt stress responses in a geographically diverse collection of Eutrema/Thellungiella spp. accessions

Yang Ping Lee A B , Christian Funk A , Alexander Erban A , Joachim Kopka A , Karin I. Köhl A , Ellen Zuther A and Dirk K. Hincha A C
+ Author Affiliations
- Author Affiliations

A Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14 476 Potsdam, Germany.

B Present address: FELDA Global Ventures Research and Development Sdn Bhd, Level 14, Menara Felda, Platinum Park, No 11, Persiaran KLCC, 50 088 Kuala Lumpur, Malaysia.

C Corresponding author. Email: hincha@mpimp-golm.mpg.de

This paper originates from presentations made at the 1st ISF-BIDR workshopSurviving the extremes: Abiotic stress tolerance in extremophile plantsheld at Ben-Gurion University of the Negev, 25 February 2015.

Functional Plant Biology 43(7) 590-606 https://doi.org/10.1071/FP15285
Submitted: 12 September 2015  Accepted: 10 December 2015   Published: 16 February 2016

Abstract

Salinity strongly impairs plant growth and development. Natural genetic variation can be used to dissect complex traits such as plant salt tolerance. We used 16 accessions of the halophytic species Eutrema salsugineum (previously called Thellungiella salsuginea (Pallas) O.E.Schulz, Thellungiella halophila (C.A.Meyer) O.E. Schulz and Thellungiella botschantzevii D.A.German to investigate their natural variation in salinity tolerance. Although all accessions showed survival and growth up to 700 mM NaCl in hydroponic culture, their relative salt tolerance varied considerably. All accessions accumulated the compatible solutes proline, sucrose, glucose and fructose and the polyamines putrescine and spermine. Relative salt tolerance was not correlated with the content of any of the investigated solutes. We compared the metabolomes and transcriptomes of Arabidopsis thaliana (L. Heynh.) Col-0 and E. salsugineum Yukon under control and salt stress conditions. Higher content of several metabolites in Yukon compared with Col-0 under control conditions indicated metabolic pre-adaptation to salinity in the halophyte. Most metabolic salt responses in Yukon took place at 200 mM NaCl, whereas few additional changes were observed between 200 and 500 mM. The opposite trend was observed for the transcriptome, with only little overlap between salt-regulated genes in the two species. In addition, only about half of the salt-regulated Yukon unigenes had orthologues in Col-0.

Additional keywords: extremophiles, gas chromatography–mass spectrometry, microarrays.


References

Al-Shehbaz IA, O’Kane SL, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9, 296–307.
Generic placement of species excluded from Arabidopsis (Brassicaceae).Crossref | GoogleScholarGoogle Scholar |

Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231, 1237–1249.
Polyamines: molecules with regulatory functions in plant abiotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 20221631PubMed |

Ali Z, Park HC, Ali A, Oh D-H, Aman R, Kropornika A, Hong H, Choi W, Chung WS, Kim W-Y, Bressan RA, Bohnert HJ, Lee SY, Yun D-J (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiology 158, 1463–1474.
TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVOktrk%3D&md5=7a84d4b6f87df1d168b2c9121b57247dCAS | 22238420PubMed |

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=f4ca8055a323e864561f4f45a11d36efCAS | 2231712PubMed |

Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant 2, 3–12.
Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2msbk%3D&md5=6354a9f76a7b8fcec89d707a16646ab0CAS | 19529830PubMed |

Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiology 138, 127–130.
Abiotic stress and plant genome evolution. Search for new models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks12iur8%3D&md5=ff156518a94982ad4d42c90560f1be54CAS | 15888685PubMed |

Arbona V, Argamasilla R, Gomez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. Journal of Plant Physiology 167, 1342–1350.
Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wju7fI&md5=6135c9910e2e9ebe1593e4d4b197f8d4CAS | 20630614PubMed |

Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Functional Plant Biology 40, 819–831.

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207.
Rapid determination of free proline for water-stress studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsVGitLk%3D&md5=f69aae8cde3f79d37f2fd0f5a4ebaa26CAS |

Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLOS Genetics 6, e1001193
A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1.Crossref | GoogleScholarGoogle Scholar | 21085628PubMed |

Bender M, Heber U, Dietz K-J (1992) Saline growth conditions favour supercooling and increase the freezing tolerance of leaves of barley and wheat. Zeitschrift für Naturforschung 47c, 695–700.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological 57, 289–300.

Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Science 140, 103–125.
Polyamines and environmental challenges: recent development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVOisA%3D%3D&md5=0ae3abf354a7083bcfafb04b7c101c5cCAS |

Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiology 127, 1354–1360.
Learning from the Arabidopsis experience. The next gene search paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWitA%3D%3D&md5=3a93d49364ad7391d39e43332ca2f228CAS | 11743073PubMed |

Champigny MJ, Sung WWL, Catana V, Salwan R, Summers PS, Dudley SA, Provart NJ, Cameron RK, Golding GB, Weretilnyk E (2013) RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions. BMC Genomics 14, 578
RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSqsLvO&md5=081f7ec16d6a61c1603113502ede43fbCAS | 23984645PubMed |

Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, Yun D-J, Bressan RA, Zhu J-K, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics 43, 913–918.
The genome of the extremophile crucifer Thellungiella parvula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOltLo%3D&md5=a6282d3d7ef500750d3a756b799aa394CAS | 21822265PubMed |

Daub CO, Kloska S, Selbig J (2003) MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19, 2332–2333.
MetaGeneAlyse: analysis of integrated transcriptional and metabolite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSju7o%3D&md5=426d87311c8eb42895a99cad03069f23CAS | 14630670PubMed |

de Meaux J, Koornneef M (2008) The cause and consequences of natural variation: the genomic era takes off! Current Opinion in Plant Biology 11, 99–102.
The cause and consequences of natural variation: the genomic era takes off!Crossref | GoogleScholarGoogle Scholar | 18337159PubMed |

DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana seedling growth. PLoS One 6, e22832
Mapping salinity tolerance during Arabidopsis thaliana seedling growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGhtL3L&md5=db18a2f2f92fffd8add4bf35a6df5920CAS | 21857956PubMed |

Dethloff F, Erban A, Orf I, Alpers J, Fehrle I, Beine-Golovchuk O, Schmidt S, Schwachtje J, Kopka J (2014) Profiling methods to identify cold-regulated primary metabolites using gas chromatography coupled to mass spectrometry. In ‘Methods in molecular biology’. (Eds DK Hincha, E Zuther) pp. 171–198. (Springer: New York)

Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Köhl KI, Hincha DK, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One 8, e60325
Dissecting rice polyamine metabolism under controlled long-term drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlSntbc%3D&md5=7b79493ddb7756da6d61121e426b48d1CAS | 23577102PubMed |

Do PT, Drechsel O, Heyer AG, Hincha DK, Zuther E (2014) Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Frontiers in Plant Science 5, 182
Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought.Crossref | GoogleScholarGoogle Scholar | 24847340PubMed |

Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945–963.
Salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FE&md5=ead9e0f52d5a777986f79fa03e42e1abCAS | 18565144PubMed |

Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savouré A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology 165, 588–599.
Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wgsr8%3D&md5=c5c47f20af49f487bf6513a5018b625fCAS | 17723252PubMed |

Guevara DR, Champigny MJ, Tattersall A, Dedrick J, Wong CE, Li Y, Labbe A, Ping C-L, Wang Y, Nuin P, Golding GB, McCarry BE, Summers PS, Moffat BA, Weretilnyk EA (2012) Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity. BMC Plant Biology 12, 175
Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVSqs70%3D&md5=c9b0ccca65e53643e989d1ab4bfa429cCAS | 23025749PubMed |

Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum 35, 2015–2036.
Plant polyamines in abiotic stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFemsrs%3D&md5=2de6566592edc488468fc777b4040ffbCAS |

Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biology 2, e245
Unused natural variation can lift yield barriers in plant breeding.Crossref | GoogleScholarGoogle Scholar | 15328532PubMed |

Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiology 142, 98–112.
Natural genetic variation of freezing tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKhsr4%3D&md5=b719fae61cea52e193b195d7955d2dd3CAS | 16844837PubMed |

Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51, 463–499.
Plant cellular and molecular responses to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7s%3D&md5=6d8ab79bcb839ec84ba41d6870cfc25eCAS | 15012199PubMed |

Hincha DK (1994) Rapid induction of frost hardiness in spinach seedlings under salt stress. Planta 194, 274–278.
Rapid induction of frost hardiness in spinach seedlings under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFChsr4%3D&md5=acc019261a2a847a0ac824ee0bddf678CAS |

Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology 135, 1718–1737.
Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsbg%3D&md5=bf475e06505a5567e681f741a4037bcdCAS | 15247369PubMed |

Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell & Environment 29, 1220–1234.
Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVCqu7c%3D&md5=5615030e88ad1960d566657a4f54ddfcCAS |

Kazachkova Y, Batushansky A, Cisneros A, Tel-Zur N, Fait A, Barak S (2013) Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophilic relative, Eutrema salsugineum, to salt stress. Plant Physiology 162, 1583–1598.
Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophilic relative, Eutrema salsugineum, to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCmtLbJ&md5=0069b92345be70ad34e59cce8429d023CAS | 23735509PubMed |

Khanal N, Moffatt BA, Gray GR (2015) Acquisition of freezing tolerance in Arabidopsis and two contrasting ecotypes of the extremophile Eutrema salsugineum (Thellungiella salsuginea). Journal of Plant Physiology 180, 35–44.
Acquisition of freezing tolerance in Arabidopsis and two contrasting ecotypes of the extremophile Eutrema salsugineum (Thellungiella salsuginea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtFSjurw%3D&md5=0936376fb1f7e7d90eb2d8b541fff58bCAS | 25889872PubMed |

Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers in Plant Science 4, 267
Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples.Crossref | GoogleScholarGoogle Scholar | 23914192PubMed |

Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55, 141–172.
Naturally occurring genetic variation in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeis7s%3D&md5=6100aad60a377a9dcd53b48d60cc5926CAS | 15377217PubMed |

Lee YP, Babakov A, de Boer B, Zuther E, Hincha DK (2012) Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella spec. and Arabidopsis thaliana accessions. BMC Plant Biology 12, 131
Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella spec. and Arabidopsis thaliana accessions.Crossref | GoogleScholarGoogle Scholar | 22863402PubMed |

Lee YP, Giorgi FM, Lohse M, Kvederaviciute K, Klages S, Usadel B, Meskiene I, Reinhardt R, Hincha DK (2013) Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum). BMC Genomics 14, 793
Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKnu77K&md5=1c2f1976d2764b5c27ff6ec180bcb9d4CAS | 24228715PubMed |

Lohse M, Nunes-Nesi A, Krüger P, Nagel A, Hannemann J, Giorgi FM, Childs L, Osorio S, Walther D, Selbig J, Sreenivasulu N, Stitt M, Fernie AR, Usadel B (2010) Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis. Plant Physiology 153, 642–651.
Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVamtrY%3D&md5=7ab027a971205efcfdb738ca043f71a0CAS | 20388663PubMed |

Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research 40, W622–W627.
RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCqsbw%3D&md5=f2b9abef4e8c295da3ab4d2891d9d62cCAS | 22684630PubMed |

Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal 64, 215–229.
Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgtrfK&md5=2f7983d69689a36c8697455644b70465CAS | 21070405PubMed |

M’rah S, Ouerghi Z, Eymery F, Rey P, Hajji M, Grignon C, Lachaâl M (2007) Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. Journal of Plant Physiology 164, 375–384.
Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFSqtrk%3D&md5=029e730e76943dabecc3d38233780f41CAS | 17074409PubMed |

McKhann HI, Gery C, Berard A, Leveque S, Zuther E, Hincha DK, de Mita S, Brunel D, Teoule E (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biology 8, 105
Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 18922165PubMed |

Mucha S, Walther D, Müller TM, Hincha DK, Glawischnig E (2015) Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. BMC Plant Biology 15, 137
Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge.Crossref | GoogleScholarGoogle Scholar | 26063239PubMed |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=dd68a82a6d2c6414e1266213f98edac3CAS | 18444910PubMed |

Oh D-H, Leidi E, Zhang Q, Hwang S-M, Li Y, Quintero FJ, Jiang X, Paino D’Urzo M, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun D-J, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiology 151, 210–222.
Loss of halophytism by interference with SOS1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjsbzL&md5=02275ef1f27e427a3c7a56acec418174CAS | 19571313PubMed |

Oh D-H, Dassanayake M, Haas JS, Kropornika A, Wright C, Paino D’Urzo M, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun D-J, Zhu J-K, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiology 154, 1040–1052.
Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2nsbfP&md5=4f97a973452c1f5e7f9c6f3e72af75c4CAS | 20833729PubMed |

Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biology 13, 241
Life at the extreme: lessons from the genome.Crossref | GoogleScholarGoogle Scholar | 22390828PubMed |

Orsini F, D’Urzo MP, Inan G, Oh D-H, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun D-J, Bohnert HJ, Bressan RA, Maggio A (2010) A comparative study of salt tolerance in 11 wild relatives of Arabidopsis thaliana. Journal of Experimental Botany 61, 3787–3798.
A comparative study of salt tolerance in 11 wild relatives of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVert7jO&md5=725ed91138abd6e86295c684a52a7fb6CAS | 20595237PubMed |

Quesada V, García-Martínez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiology 130, 951–963.
Genetic architecture of NaCl tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVKntbo%3D&md5=c941cdc3d77315c356f57c1b8184c13fCAS | 12376659PubMed |

Rohde P, Hincha DK, Heyer AG (2004) Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. The Plant Journal 38, 790–799.
Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlCrs70%3D&md5=efc610694460b1a75212f8d31dcec293CAS | 15144380PubMed |

Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum 132, 209–219.

Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi M, Kopka J (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant, Cell & Environment 34, 605–617.
Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFalu7c%3D&md5=06722d083626dfe0d261203326d15459CAS |

Schmidt JE, Schmitt JM, Kaiser WM, Hincha DK (1986) Salt treatment induces frost hardiness in leaves and isolated thylakoids from spinach. Planta 168, 50–55.
Salt treatment induces frost hardiness in leaves and isolated thylakoids from spinach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xktl2lsrs%3D&md5=a15d6d519340f5cac649cd3c74b05049CAS | 24233734PubMed |

Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, van Dongen JT, Kopka J (2012) Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Science 182, 101–111.
Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejur%2FO&md5=ef4dae57bcf2ed5e3334831210560599CAS | 22118621PubMed |

Stepien P, Johnson GL (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology 149, 1154–1165.
Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ajs7c%3D&md5=4c938cb873adc8a5aee413cc8b7a565dCAS | 19052149PubMed |

Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C (2011) Natural variation of root hydraulics in Atrabidopsis grown in normal and salt-stressed conditions. Plant Physiology 155, 1264–1276.
Natural variation of root hydraulics in Atrabidopsis grown in normal and salt-stressed conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOrtL8%3D&md5=1585c6943681db73e622e18ef9754be6CAS | 21212301PubMed |

Thalhammer A, Hincha DK, Zuther E (2014) Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays. Methods in Molecular Biology 1166, 15–24.
Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFGmsbY%3D&md5=d10e261b08601464392f04766bde6596CAS | 24852625PubMed |

Vallejo AJ, Yanovsky MJ, Botto JF (2010) Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses. Annals of Botany 106, 833–842.
Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCltL7K&md5=c8ae81dd573a523cc1170191918494daCAS | 20861274PubMed |

Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiology 139, 1507–1517.
Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ogu73F&md5=82b717bef27653708846d106eed9a3d5CAS | 16244148PubMed |

Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell & Environment 27, 1–14.
Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1emtLo%3D&md5=7e045709e3fc013e47a72181f5dcfc53CAS |

Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiology 158, 2–22.
Natural variation in Arabidopsis: from molecular genetics to ecological genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFSns7Y%3D&md5=ec0ff8ad19faeb281046a727882ee532CAS | 22147517PubMed |

Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology 140, 1437–1450.
Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jsrg%3D&md5=c6cfc0b1838d5f26796645a2c94dfffbCAS | 16500996PubMed |

Wu H-J, Zhang Z, Wang J-Y, Oh D-H, Dassanayake M, Liu B, Huang Q, Sun H-X, Xia R, Wu Y, Wang Y-N, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen S-Y, Bohnert HJ, Zhu J-K, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America 109, 12219–12224.
Insights into salt tolerance from the genome of Thellungiella salsuginea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GktbvN&md5=da4aecca5b823e8156d26ab67f92c2d9CAS | 22778405PubMed |

Yang R, Jarvis DJ, Chen H, Beilstein M, Grimwood J, Jenkins J, Shu SQ, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker K, Wang X (2013) The reference genome of the halophytic plant Eutrema salsugineum. Frontiers in Plant Science 4, 46
The reference genome of the halophytic plant Eutrema salsugineum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGjtbjJ&md5=c9f0061fb6253bae9312fff8f9a92eb4CAS | 23518688PubMed |

Zhen Y, Ungerer MC (2008) Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Molecular Biology and Evolution 25, 2547–2555.
Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSntr%2FI&md5=2a6ea93ab0e877476f15349c6cf59379CAS | 18775899PubMed |

Zuther E, Kwart M, Willmitzer L, Heyer AG (2004) Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport. Planta 218, 759–766.
Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslGjsL4%3D&md5=b02a05b7937da6e5cd3dd9a67d5a0b34CAS | 14625772PubMed |

Zuther E, Schulz E, Childs LH, Hincha DK (2012) Clinal variation in the nonacclimated and cold acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant, Cell & Environment 35, 1860–1878.
Clinal variation in the nonacclimated and cold acclimated freezing tolerance of Arabidopsis thaliana accessions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12itrrK&md5=1b999eefcb1740653097bdf4bdbdc844CAS |