Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Isolation and functional characterisation of CDPKs gene from Arachis hypogaea under salt stress

Yan Li A B , Feng Fang C , Feng Guo A , Jing-Jing Meng A , Xin-Guo Li A E , Guang-Min Xia D and Shu-Bo Wan B E
+ Author Affiliations
- Author Affiliations

A Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, 250 100, China.

B Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan, 250 100, China.

C Institute of Plant Protection, Shandong Academy of Agricultural Sciences. Ji’nan, 250100, China.

D College of Life Sciences, Shandong University, Ji’nan, 250100, China.

E Corresponding authors. Emails: lixinguo@tom.com; wansb@saas.ac.cn

Functional Plant Biology 42(3) 274-283 https://doi.org/10.1071/FP14190
Submitted: 16 July 2014  Accepted: 3 November 2014   Published: 24 December 2014

Abstract

One of salt-induced calcium-dependent protein kinases (CDPKs) gene was isolated from Arachis hypogeae L. by RACE method. The cDNA full length was 2241 bp deposited in GenBank (number KF437909), designated as AhCDPK. The coding region sequence of AhCDPK was 1629 bp and encoded a protein of 542 amino acids. The molecular weight and the theoretical isoelectric point of AhCDPK was 60.96 kDa and 5.61 respectively. Amino acid sequence analysis indicated that AhCDPK has highest similarity and homology with Glycine max L. In addition, the AhCDPK amino acids were predicted to encode a hydrophilic protein which localised in the endoplasmic reticulum. AhCDPK seemed to transcript in all peanut organs, and had the highest expression in seeds. The expression of AhCDPK could be strongly induced by both Ca2+ and NaCl. When exposed to salt stress, overexpressing AhCDPK in tobacco could alleviate PSII photoinhibition by improving physiological states, such as reducing the accumulation of reactive oxygen species (ROS), improving the activity of antioxidant defence system enzymes and improving the accumulation of osmotic regulation substance. These results showed that AhCDPK has the same functions as that of G. max, and it could play an important role for peanut to resist salt stress.

Additional keywords: calcium-dependent protein kinases, expression analysis, salt tolerance, transgenic tobacco.


References

Aebi H (1984) Catalase in vitro. Methods in Enzymology 105, 121–126.
Catalase in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVKis7s%3D&md5=0f03138f59a88b70a90c7888457aa10cCAS | 6727660PubMed |

Bai YQ, Yang QC, Kang JM (2012) Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3–1. Molecular Biology Reports 39, 2883–2892.
Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3–1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWmu7s%3D&md5=510286738e46ccf0b254f6a3b202a918CAS |

Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287.
Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XjtFKhsg%3D%3D&md5=1e94ff2e58ee7026c265cf9d5495c7feCAS | 4943714PubMed |

Botella JR, Arteca JM, Somodevilla M, Arteca RN (1996) Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mung bean(Vigna radiata). Plant Molecular Biology 30, 1129–1137.
Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mung bean(Vigna radiata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Kis70%3D&md5=7fa8c7c04a258c6bf80731842777bbd3CAS | 8704124PubMed |

Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods in Enzymology 2, 764–775.
Assay of catalases and peroxidases.Crossref | GoogleScholarGoogle Scholar |

Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology 129, 469–485.
Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jsb8%3D&md5=fc68bb4cabadaceea0ae7c4b5649ec0cCAS | 12068094PubMed |

Chi XY, Hu RB, Yang QL, Zhang XW, Pan LJ, Chen N, Chen MN, Yang Z, Wang T, He YN, Yu SL (2012) Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Molecular Genetics and Genomics 287, 167–176.
Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WksbY%3D&md5=0eefc024ebb8708a238ae2e505438c04CAS |

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356.
Colorimetric method for determination of sugars and related substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XjvFynsg%3D%3D&md5=efd15905cce8f2c3d2ff30a9dd0a43c3CAS |

Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Current Opinion in Plant Biology 4, 415–420.
Calcium oscillations in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFKgtrs%3D&md5=cd0fbcc6237539980ad090eb56aa1850CAS | 11597499PubMed |

Harmon AC, Putnam-Evans C, Cormier MJ (1987) A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiology 83, 830–837.
A calcium-dependent but calmodulin-independent protein kinase from soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlGnu74%3D&md5=e2703a6d8082c49767bea09799613303CAS | 16665348PubMed |

Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252, 951–954.
A calcium-dependent protein kinase with a regulatory domain similar to calmodulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs1yrur8%3D&md5=0d2f33e5f34a97cad1c8a7640eddff9eCAS | 1852075PubMed |

Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an auto inhibitor in CDPK, a protein kinase with a calmodulin like domain. Biochemistry 33, 7267–7277.
Genetic identification of an auto inhibitor in CDPK, a protein kinase with a calmodulin like domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFejsLk%3D&md5=b842ccfa9d47fb448be6d13daa0e32d3CAS | 8003490PubMed |

Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189–198.
Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtFWgtLw%3D&md5=88cd0a7519ad58ffe9ed9e744785e6acCAS | 5655425PubMed |

Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research 16, 9877
Storage of competent cells for Agrobacterium transformation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FktFGqsA%3D%3D&md5=4982633cfa1470c0ad190c87991f3ff1CAS | 3186459PubMed |

Horsch RB, Fry JE, Hoffmann NL (1985) A simple and general method for transferring genes into plants. Science 227, 1129–1131.

Knight H (1999) Calcium signaling during abiotic stress in plants. International Review of Cytology 195, 269–324.
Calcium signaling during abiotic stress in plants.Crossref | GoogleScholarGoogle Scholar |

Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal 12, 1067–1078.
Calcium signaling in Arabidopsis thaliana responding to drought and salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlegtw%3D%3D&md5=0a6cb9aeff6dbd75e3214f116ad820b3CAS | 9418048PubMed |

Leonardi A, Heimovaara-Dijkstra S, Wang M (1995) Differential involvement of abscisic acid in dehydration and osmotic stress in rice cell suspension. Plant Physiology 93, 31–37.
Differential involvement of abscisic acid in dehydration and osmotic stress in rice cell suspension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFOhsro%3D&md5=86f2f6c534b3e6f7da7924c499411710CAS |

Li HS (2002) Plant stress physiology. In ‘Modern plant physiology’. pp. 389–438. (Higher Education Press: Beijing)

Li Y, Sun Y, Yang QC, Fang F, Kang JM, Zhang TJ (2013) Isolation and characterization of a gene encoding bZIP transcription factor from Medicago sativa L. Molecular Biology Reports 40, 1227–1239.
Isolation and characterization of a gene encoding bZIP transcription factor from Medicago sativa L.Crossref | GoogleScholarGoogle Scholar | 23096087PubMed |

Lowry OH, Rosenbrough NJ, Farr LA, Randall RJ (1951) Protein measurement with Folin reagent. Journal of Biological Chemistry 193, 265–275.

Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiology 128, 1008–1021.
An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1GqtL8%3D&md5=4242aed6096e74ef399f54c50e807200CAS | 11891256PubMed |

Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. Journal of Plant Physiology 157, 183–193.
Reactive oxygen species: response of algal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1ygt7o%3D&md5=904a10283bbf834aefe9973ec621f876CAS |

Martin M, Busconi L (2002) Membrane localization of a rice calcium-dependant protein kinase (CDPK) is mediated by myristoylafion and palmitoylation. The Plant Journal 24, 429–435.

Patharkar OR, Cushman JC (2000) A stress-induced calcium-dependent protein kinase from Mesombryanthemum cystallinum phosphorylates a two-component pesudo-response regulator. The Plant Journal 24, 679–691.
A stress-induced calcium-dependent protein kinase from Mesombryanthemum cystallinum phosphorylates a two-component pesudo-response regulator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFOksQ%3D%3D&md5=6162b254ef7f28df2021f1dc5ccf5592CAS | 25532053PubMed |

Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal 34, 257–267.
The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1yitbo%3D&md5=6e838155b17580d793f2998b45751dbcCAS | 12713533PubMed |

Rudd JJ, Franklin-Tong VE (2001) Unravelling response specificity in Ca2+ signalling pathways in plant cells. New Phytologist 151, 7–33.
Unravelling response specificity in Ca2+ signalling pathways in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFGkurY%3D&md5=249e0ed43defc46058f06dd45659cd67CAS |

Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of n single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal 23, 319–327.
Over-expression of n single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSltbs%3D&md5=dc7cd54c82c8cff21d20e696c68e8d04CAS | 10929125PubMed |

Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuim J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A Ca2+-dependent protein kinase that endows rice plants with cold-and salt stress tolerance functions in vascular bundles. Plant & Cell Physiology 42, 1228–1233.
A Ca2+-dependent protein kinase that endows rice plants with cold-and salt stress tolerance functions in vascular bundles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Omsrs%3D&md5=54fe662c73b38170445581c061dc85bbCAS |

Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. The Plant Cell 11, 691–706.
Communicating with calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSrurk%3D&md5=c413f84b581a7c242c87b4277a6841f2CAS | 10213787PubMed |

Sui N, Li M, Liu XY, Wang N, Fang W (2007) Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato overexpressing glycerol-3-phosphate acyltransferase gene. Photosynthesis Research 45, 447–454.
Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato overexpressing glycerol-3-phosphate acyltransferase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGqsr8%3D&md5=4e7105d28534755a4373b8c8a31c8a87CAS |

Troll W, Lindsley J (1955) A photometric method for the determination of proline. Journal of Biological Chemistry 215, 655–660.

Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Molecular & General Genetics 244, 331–340.
Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsVOkurY%3D&md5=e2ee2c49e55218dec8779d717d82c3deCAS |

Valentovic P, Luxova M, Kolarovic L, Gasparikova O (2006) Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environment 52, 186–191.

van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25, 147–150.
The use of chlorophyll fluorescence nomenclature in plant stress physiology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2czkvF2qtw%3D%3D&md5=8cbe0117121ac01d13774f99507067d8CAS | 24420345PubMed |

Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology 6, 55–57.

Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. Journal of Plant Physiology 167, 222–230.
A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFCis7g%3D&md5=6ab2ba1a745eafec7e28f862ca24f032CAS |

Wang XJ, Liu ST, Xia H, Wan SB, Zhao CZ, Li AQ (2011) Peanut (Arachis hypogaea L.) omics and biotechnology in China. Plant Omics Journal 4, 339–349.

Wang F, Yang S, Guo F, Meng J-J, Meng Q-W, Wan S-B, Li X-G (2015) Effects of calcium on peanut (Arachis Hypogaea L.) seedling growth, accumulation of reactive oxygen species and photoinhibition. Acta Ecologica Sinica 35, 1–11.

Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. The Plant Cell 14, S165–S183.

Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M, Ma YZ (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE binding factor responsive to drought, high-salt, and cold stress in wheat. Molecular Genetics and Genomics 280, 497–508.
Characterization of the TaAIDFa gene encoding a CRT/DRE binding factor responsive to drought, high-salt, and cold stress in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOmtrvM&md5=cb7a678f103e3de0e426918138fc17faCAS | 18800227PubMed |

Yang S, Wang F, Guo F, Meng JJ, Li XG, Dong ST, Wan SB (2013) Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea) leaves during heat stress under high irradiance. PLoS ONE 8, 1–10.

Yoon GM, Cho HS, Ha HJ, Lie JR, Lee HP (1999) Characterization of NtCDPKl, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Molecular Biology 39, 991–1001.
Characterization of NtCDPKl, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1SqtLw%3D&md5=c24a74c202e24c5bb96f5eb2a811f65eCAS | 10344204PubMed |