Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

FT genes and regulation of flowering in the legume Medicago truncatula

Joanna Putterill A D , Lulu Zhang A , Chin Chin Yeoh A , Martin Balcerowicz A B , Mauren Jaudal A and Erika Varkonyi Gasic C
+ Author Affiliations
- Author Affiliations

A Flowering Lab, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.

B Present Address: Botanical Institute, University of Cologne, Cologne Biocenter, Zülpicher Straße 47b, 50674 Köln, Germany.

C The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.

D Corresponding author. Email: j.putterill@auckland.ac.nz

This paper originates from a presentation at the ‘VI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 2–7 October 2012.

Functional Plant Biology 40(12) 1199-1207 https://doi.org/10.1071/FP13087
Submitted: 8 April 2013  Accepted: 25 May 2013   Published: 11 July 2013

Abstract

Flowering time is an important contributor to plant productivity and yield. Plants integrate flowering signals from a range of different internal and external cues in order to flower and set seed under optimal conditions. Networks of genes controlling flowering time have been uncovered in the flowering models Arabidopsis, wheat, barley and rice. Investigations have revealed important commonalities such as FT genes that promote flowering in all of these plants, as well as regulators that are unique to some of them. FT genes also have functions beyond floral promotion, including acting as floral repressors and having a complex role in woody polycarpic plants such as vines and trees. However, much less is known overall about flowering control in other important groups of plants such as the legumes. This review discusses recent efforts to uncover flowering-time regulators using candidate gene approaches or forward screens for spring early flowering mutants in the legume Medicago truncatula. The results highlight the importance of a Medicago FT gene, FTa1, in flowering-time control. However, the mechanisms by which FTa1 is regulated by environmental signals such as long days (photoperiod) and vernalisation (winter cold) appear to differ from Arabidopsis.

Additional keywords: CO-like genes, circadian, FLC, repressor, pea.


References

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.
FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsl2ltLs%3D&md5=2823953c488b499dff16588ed7897d39CAS | 16099979PubMed |

Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO Journal 25, 605–614.
A divergent external loop confers antagonistic activity on floral regulators FT and TFL1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGqtrg%3D&md5=51696295a14b66e246b5717b91ed0171CAS | 16424903PubMed |

Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nature Reviews. Genetics 13, 627–639.
The genetic basis of flowering responses to seasonal cues.Crossref | GoogleScholarGoogle Scholar | 22898651PubMed |

Benlloch R, d’Erfurth I, Ferrandiz C, Cosson V, Beltran JP, Canas LA, Kondorosi A, Madueno F, Ratet P (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiology 142, 972–983.
Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurbL&md5=b7505372a06d01f64b720da90c8ee647CAS | 16963524PubMed |

Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Current Biology 20, 629–635.
The role of recently derived FT paralogs in sunflower domestication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1KntL0%3D&md5=9c8816cd69874e40033bb93ec00a3662CAS | 20303265PubMed |

Carmona M, Calonje M, Martínez-Zapater J (2007) The FT/TFL1gene family in grapevine. Plant Molecular Biology 63, 637–650.
The FT/TFL1gene family in grapevine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFKmsLs%3D&md5=bd5c096ee8730e11d52a068c5f64f50cCAS | 17160562PubMed |

D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. The Plant Journal 65, 972–979.
Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVaisLY%3D&md5=d425ffea25cb716fdbd5078e6060749cCAS | 21205031PubMed |

Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research 14, 703–712.
Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFemu7jK&md5=99d2bc6e10de827ef426c903c6e39975CAS | 16245161PubMed |

Galvão VC, Horrer D, Küttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139, 4072–4082.
Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 22992955PubMed |

Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proceedings of the National Academy of Sciences of the United States of America 102, 7748–7753.
A single amino acid converts a repressor to an activator of flowering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslOmsbw%3D&md5=69a85fd34e072e2fcfe4640c3e2ec005CAS | 15894619PubMed |

Harig L, Beinecke FA, Oltmanns J, Muth J, Muller O, Ruping B, Twyman RM, Fischer R, Prufer D, Noll GA (2012) Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. The Plant Journal 72, 908–921.
Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSksLY%3D&md5=ce5c05c9e00d66bf3203702d27612dc7CAS |

Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology 137, 1420–1434.
Conservation of Arabidopsis flowering genes in model legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqu7s%3D&md5=3f6ed066ade3d7e393925ec71971a889CAS | 15778459PubMed |

Hecht V, Knowles CL, Schoor JKV, Liew LC, Jones SE, Lambert MJM, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiology 144, 648–661.
Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvValsbo%3D&md5=1fa9cbf948de0515cd36f9137b649d5dCAS | 17468223PubMed |

Hecht V, Laurie RE, Vander Schoor JK, Ridge S, Knowles CL, Liew LC, Sussmilch FC, Murfet IC, Macknight RC, Weller JL (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. The Plant Cell 23, 147–161.
The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFalsL8%3D&md5=bb4b05d8800bc8a29c88ca9dfffa6cb8CAS | 21282524PubMed |

Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5, e10065
Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses.Crossref | GoogleScholarGoogle Scholar | 20419097PubMed |

Hiraoka K, Yamaguchi A, Abe M, Araki T (2012) The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant & Cell Physiology 54, 352–368.
The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Hsu C-Y, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America 108, 10 756–10 761.
FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovV2htrc%3D&md5=0d5f3d8536dae3340c0c28a1a6fd1658CAS |

Julier B, Huguet T, Chardon F, Ayadi R, Pierre J, Prosperi J, Barre P, Huyghe C (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theoretical and Applied Genetics 114, 1391–1406.
Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 17375280PubMed |

Jung C, Muller AE (2009) Flowering time control and applications in plant breeding. Trends in Plant Science 14, 563–573.
Flowering time control and applications in plant breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqs7zF&md5=e4176d3f0db6a8bc60893ddd7f2abec3CAS | 19716745PubMed |

Jung C-H, Wong CE, Singh MB, Bhalla PL (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7, e38250
Comparative genomic analysis of soybean flowering genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Kgs7o%3D&md5=2ef2f518797789c53cac092ea9b1cfbdCAS | 22679494PubMed |

Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annual Review of Cell and Developmental Biology 25, 277–299.
Vernalization: winter and the timing of flowering in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKisbvN&md5=0f63d19f19d1f414ffc16adb055eeb05CAS | 19575660PubMed |

Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S-i, Shimazaki K-i (2011) FLOWERING LOCUS T regulates stomatal opening. Current Biology 21, 1232–1238.
FLOWERING LOCUS T regulates stomatal opening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlekurc%3D&md5=9653e10161fdb301f7db6648a89aa4e7CAS | 21737277PubMed |

Kong FJ, Liu BH, Xia ZJ, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology 154, 1220–1231.
Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ntr7E&md5=d6ed4ca0a17ee59ee76470ad87a8d7d5CAS |

Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-i, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant & Cell Physiology 51, 561–575.
Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Khurg%3D&md5=2da761f729ee2245bdf2fa6eafb860a1CAS |

Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genetics 42, 459–463.
The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFarsrg%3D&md5=b1c49aa4f29166e15a9663874923c150CAS | 20348958PubMed |

Laurie RE, Diwadkar P, Jaudal M, Zhang LL, Hecht V, Wen JQ, Tadege M, Mysore KS, Putterill J, Weller JL, Macknight RC (2011) The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiology 156, 2207–2224.
The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrurrJ&md5=28b2df74608bbc7c58f19a907dd31a1cCAS | 21685176PubMed |

Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001) Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. The Plant Journal 26, 15–22.
Analysis of the function of two circadian-regulated CONSTANS-LIKE genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Kls7s%3D&md5=bde8476dafbc4662a9d18e0cfa96e460CAS | 11359606PubMed |

Liew LC, Hecht V, Laurie RE, Knowles CL, Schoor JKV, Macknight RC, Weller JL (2009) DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. The Plant Cell 21, 3198–3211.
DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOgsLjP&md5=ba443379a57b99ec9c39a9e4f7e4192dCAS | 19843842PubMed |

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the United States of America 103, 6398–6403.
The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFamt78%3D&md5=53f025657fdb777476250749b26e80b2CAS | 16606827PubMed |

Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biology 7, e1000148
Repression of flowering by the miR172 target SMZ.Crossref | GoogleScholarGoogle Scholar | 19582143PubMed |

Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiology 137, 149–156.
Integration of flowering signals in winter-annual Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmu7w%3D&md5=c7cfedc05143655bae6920801868adc7CAS | 15618421PubMed |

Mimida N, Kidou SI, Iwanami H, Moriya S, Abe K, Voogd C, Varkonyi-Gasic E, Kotoda N (2011) Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiology 31, 555–566.
Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.Crossref | GoogleScholarGoogle Scholar | 21571725PubMed |

Murfet IC, Reid JB (1987) Flowering in Pisum: gibberellins and the flowering genes. Journal of Plant Physiology 127, 23–29.
Flowering in Pisum: gibberellins and the flowering genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlKkt74%3D&md5=34998672eb69fe80dcea5028678bcb96CAS |

Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany 60, 1979–1989.
Gibberellin as a factor in floral regulatory networks.Crossref | GoogleScholarGoogle Scholar | 19264752PubMed |

Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478, 119–122.
Control of flowering and storage organ formation in potato by FLOWERING LOCUS T.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltLbE&md5=83cd5098a3b53614cc85ed5307971e7cCAS | 21947007PubMed |

Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Journal of Experimental Botany 58, 3915–3927.
Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVWi&md5=cae2dbf67d117051795d856020cfba56CAS | 18000016PubMed |

Pierre JB, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theoretical and Applied Genetics 117, 609–620.
Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFOntr8%3D&md5=4ea7b177c000da379a4c2aade9afd0eeCAS | 18553068PubMed |

Pierre JB, Bogard M, Herrmann D, Huyghe C, Julier B (2011) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Molecular Breeding 28, 25–35.
A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar |

Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell & Environment 35, 1742–1755.
The multifaceted roles of FLOWERING LOCUS T in plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12itrjN&md5=b65128a264b17fb1fbb7720fa5b54cb0CAS |

Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330, 1397–1400.
An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyrsbbM&md5=1119a327e0d66dd6f6d0277668b8f152CAS | 21127254PubMed |

Pin PA, Zhang W, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJL, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Current Biology 22, 1095–1101.
The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xntlaksbc%3D&md5=7db8e979c283510b3f9a3b92c4b27e64CAS | 22608508PubMed |

Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. The Plant Cell 13, 2687–2702.

Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26, 363–373.
It’s time to flower: the genetic control of flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Oqsbg%3D&md5=73be5af1e6214405067a098eb56f02a4CAS | 15057934PubMed |

Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Functional Plant Biology 35, 253–264.
Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future.Crossref | GoogleScholarGoogle Scholar |

Sawa M, Kay SA (2011) GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 108, 11 698–11 703.
GIGANTEA directly activates flowering locus T in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt12qsr8%3D&md5=892d1cda3f8b35daba88ae167cae3947CAS |

Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, Kobayashi Y, Maloof JN, Borevitz JO, Chory J, Weigel D (2009) Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 183, 723–732.
Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWjsLrK&md5=76272c5398699c2ee75fe619567e9ef7CAS | 19652183PubMed |

Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, Lifschitz E (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proceedings of the National Academy of Sciences of the United States of America 106, 8392–8397.
The flowering hormone florigen functions as a general systemic regulator of growth and termination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsl2nsLo%3D&md5=8bb3a7584640a482a4bae37b1650e58eCAS | 19416824PubMed |

Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Functional Plant Biology 33, 1129–1139.
VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OgsLbL&md5=82e1deaf963627a7acc567d98f52aeb9CAS |

Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68, 2013–2037.
Regulation of flowering time: all roads lead to Rome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyrtb4%3D&md5=56c0e14c14b929435f7c5bf8ea8147e6CAS | 21611891PubMed |

Strange A, Li P, Lister C, Anderson J, Warthmann N, Shindo C, Irwin J, Nordborg M, Dean C (2011) Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS ONE 6, e19949
Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Kmtr0%3D&md5=d77ccb46ef88d0d4697bfb647a852eedCAS | 21625501PubMed |

Tadege M, Wen JQ, He J, Tu HD, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal 54, 335–347.
Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVWhs7w%3D&md5=ae9bda47d2d633b19235f16800249d3fCAS | 18208518PubMed |

Tadege M, Wang TL, Wen JQ, Ratet P, Mysore KS (2009) Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiology 151, 978–984.
Mutagenesis and beyond! Tools for understanding legume biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsb3J&md5=ac265466042b366030c4ffe8fc0d58caCAS | 19741047PubMed |

Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends in Plant Science 12, 352–357.
The molecular basis of vernalization-induced flowering in cereals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGqu70%3D&md5=6f43db484a39aa1ffbb372a646605259CAS | 17629542PubMed |

Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology 59, 573–594.
Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqsbc%3D&md5=9f1f303572a902ec15e9ca00d67fbc59CAS | 18444908PubMed |

Turnbull C (2011) Long-distance regulation of flowering time. Journal of Experimental Botany 62, 4399–4413.
Long-distance regulation of flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKisbrE&md5=5e5ad16ba8ef202928490c9dbd9822b4CAS | 21778182PubMed |

Varkonyi-Gasic E, Moss SMA, Voogd C, Wang T, Putterill J, Hellens RP (2013) Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist
Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit.Crossref | GoogleScholarGoogle Scholar | 23577598PubMed |

Vergara R, Rubio S, Pérez F (2012) Hypoxia and hydrogen cyanamide induce bud-break and up-regulate hypoxic responsive genes (HRG) and VvFT in grapevine-buds. Plant Molecular Biology 79, 171–178.
Hypoxia and hydrogen cyanamide induce bud-break and up-regulate hypoxic responsive genes (HRG) and VvFT in grapevine-buds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWmtLY%3D&md5=f51d9643b58d973698ee548f2ae261d2CAS | 22466405PubMed |

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339, 704–707.
Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOktr0%3D&md5=a79313986077d292b11b999139fa3836CAS | 23393265PubMed |

Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R (2008) Control of compound leaf development by FLORICAULA/LEAFY Ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiology 146, 1759–1772.
Control of compound leaf development by FLORICAULA/LEAFY Ortholog SINGLE LEAFLET1 in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVWisrg%3D&md5=3d4a6ee11d841db934c0dcc9f4c70452CAS | 18287485PubMed |

Wang JW, Czech B, Weigel D (2009) miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749.
miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjs7rJ&md5=3741dd2a4e14b3d71e4fe932a1a99747CAS | 19703399PubMed |

Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188, 395–407.
A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKiurzF&md5=b9037e9f33fbd34568445a8e43e4e20eCAS | 21406680PubMed |

Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB (2004) A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A. Plant Physiology 135, 2186–2195.
A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1GgsL4%3D&md5=bfc783fa11488c9c6689c7fb8771e641CAS | 15286297PubMed |

Weller JL, Hecht V, Liew LC, Sussmilch FC, Wenden B, Knowles CL, Schoor JKV (2009) Update on the genetic control of flowering in garden pea. Journal of Experimental Botany 60, 2493–2499.
Update on the genetic control of flowering in garden pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGisbs%3D&md5=fc9a9c30d4bcb72ba1f021b75ef0536dCAS | 19414500PubMed |

Weller JL, Liew LC, Hecht VFG, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, Dalmais M, Rameau C, Bendahmane A, Macknight RC, Lejeune-Hénaut I (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the National Academy of Sciences of the United States of America 109, 21 158–21 163.
A conserved molecular basis for photoperiod adaptation in two temperate legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOnsA%3D%3D&md5=1d5eeca7ecea99b45781c365878bd3afCAS |

Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.
Integration of spatial and temporal information during floral induction in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsl2ltLk%3D&md5=288ed69b2f1fb2e534ef90a4ef6db8f8CAS | 16099980PubMed |

Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. Journal of Experimental Botany 59, 3215–3228.
Regulation of floral initiation in horticultural trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWit7rL&md5=cd0e66aca9b75f5a5a037516ac55584fCAS | 18653697PubMed |

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America 103, 19 581–19 586.
The wheat and barley vernalization gene VRN3 is an orthologue of FT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOmsg%3D%3D&md5=cfef6f25616da1388b61aa05633d0734CAS |

Yang L, Conway SR, Poethig RS (2011) Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138, 245–249.
Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKlsLc%3D&md5=7aeeba2eb6aec12643fafd81842cd042CAS | 21148189PubMed |

Yeoh CC, Balcerowicz M, Laurie R, Macknight R, Putterill J (2011) Developing a method for customized induction of flowering. BMC Biotechnology 11, 36

Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J (2013) Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago. PLoS ONE 8, e53467
Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFalsrc%3D&md5=aecbb76673b0598770ee72e49c7258a1CAS | 23308229PubMed |

Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou SG, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang HB, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai XB, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jocker A, Kenton SM, Kim DJ, Klee K, Lai HS, Lang CT, Lin SP, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin BF, Qu CM, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi RH, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang KQ, Wang MY, Wang XH, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing YB, Yang LM, Yao ZY, Ying F, Zhai JX, Zhou LP, Zuber A, Denarie J, Dixon RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524.