Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Physiological response of halophytes to multiple stresses

Karim Ben Hamed A , Hasna Ellouzi A , Ons Zribi Talbi A , Kamel Hessini A , Ines Slama A , Taher Ghnaya A , Sergi Munné Bosch C , Arnould Savouré B and Chedly Abdelly A D
+ Author Affiliations
- Author Affiliations

A Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cédria, BP 901, Hammam-Lif 2050, Tunisia.

B Physiologie Cellulaire et Moléculaire des Plantes, UR5, EAC 7180 CNRS, Université Pierre et Marie Curie (UPMC), Case 156, 4 place Jussieu, 75252 Paris cedex 05, France.

C Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.

D Corresponding author. Email: chedly.abdelly@gmail.com

This paper originates from a presentation at the COST WG2 MeetingPutting halophytes to workgenetics, biochemistry and physiologyHannover, Germany, 2831 August 2012.

Functional Plant Biology 40(9) 883-896 https://doi.org/10.1071/FP13074
Submitted: 29 March 2013  Accepted: 1 June 2013   Published: 18 July 2013

Abstract

As halophytes grow vigorously in saline soils, they serve as extraordinary resources for the identification and development of new crop systems. Understanding the mechanisms of tolerance of halophytes to salinity in combination with other co-occurring constraints such as drought, flooding, heavy metals and nutrient deficiencies, would facilitate efforts to use halophytes for saline land revegetation, as well as provide new insights that might be considered in future breeding of plants for salt-affected agricultural lands. Recent results suggest that salinity may improve the response of halophytes to other stresses. Some physiological and biochemical mechanisms of tolerance to salinity are common to many halophytes when plants are subjected to salinity, whereas others are specifically amplified under a combination of stresses. Therefore, the response of halophytes to multiple stresses may not reflect an additive effect of these constraints, but rather, constitute specific response to a new situation where many constraints are operating simultaneously. Comparative studies between halophytes and glycophytes have shown that halophytes are better equipped with the mechanisms of cross-stress tolerance and are constitutively prepared for stress. Moreover, other data has shown that the pre-treatment of halophytes with salinity or other constraints in the early stages of development improves their subsequent response to salinity, which suggests the capacity of these plants to ‘memorise’ a previous stress allows them respond positively to subsequent stress.

Additional keywords: halophyte, salinity, stress combination.


References

Alhdad G, Seal CE, Al-Azzawi MJ, Flowers TJ (2013) The effects of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environmental and Experimental Botany 87, 120–125.
The effects of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1KqtL0%3D&md5=5e935ae37e77cb22b60575c425f66ea2CAS |

Amtmann (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant 2, 3–12.
Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2msbk%3D&md5=1ab76ac13e1dad8d7821e44289ab1f50CAS | 19529830PubMed |

Asensi-Fabado MA, Oliván A, Munné-Bosch S (2013) A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany (In press)

Atreya A, Vartak V, Bhargava S (2009) Salt priming improves tolerance to dessication stress and to extreme salt stress in Bruguiera cylindrica. International Journal of Integrative Biology 6, 68–73.

Barhoumi Z, Attia A, Rabhi M, Djebali W, Abdelly C, Smaoui A (2010) Nitrogen and NaCl salinity effects on the growth and nutrient acquisition of the grasses Aeluropus littoralis, Catapodium rigidum and Brachypodium distachyum. Journal of Plant Nutrition and Soil Science 173, 149–157.
Nitrogen and NaCl salinity effects on the growth and nutrient acquisition of the grasses Aeluropus littoralis, Catapodium rigidum and Brachypodium distachyum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGjurc%3D&md5=9f7642966105a1c7d83647547fb0e970CAS |

Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and Soil 253, 35–54.
The interaction between waterlogging and salinity in higher plants: causes, consequences and implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVemsbk%3D&md5=a46fbd122186d4e690bf50aab4cd8500CAS |

Barrett-Lennard EG, Shabala SN (2013) The waterlogging/salinity interaction in higher plants revisited – focusing on the hypoxia-induced disturbance to K+ homeostasis. Functional Plant Biology
The waterlogging/salinity interaction in higher plants revisited – focusing on the hypoxia-induced disturbance to K+ homeostasis.Crossref | GoogleScholarGoogle Scholar |

Bazihizina N, Barrett-Lennard EG, Colmer TD (2012) Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone. Journal of Experimental Botany 63, 6347–6358.
Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslakt77I&md5=666acba7387be80af43c988bd0a3c4c7CAS | 23125356PubMed |

Ben Hamed K, Castagna A, Elkahoui S, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation 53, 185–194.
Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahs7jN&md5=5e7da10fa9084ac53a6e9e70ecbe8240CAS |

Bennett SJ, Barrett-Lennard EG, Colmer TD (2009) Salinity and waterlogging as constraints to saltland pasture production: a review. Agriculture, Ecosystems & Environment 129, 349–360.
Salinity and waterlogging as constraints to saltland pasture production: a review.Crossref | GoogleScholarGoogle Scholar |

Boto KG, Saffigna P, Clough B (1985) Role of nitrate in nitrogen nutrition of the mangrove Avicennia marina. Marine Ecology Progress Series 21, 259–265.
Role of nitrate in nitrogen nutrition of the mangrove Avicennia marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFagur0%3D&md5=aa0610175cbc43cb1dfd191db0b37f85CAS |

Bradley PM, Morris JT (1990) Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology 71, 282–287.
Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFGgtr0%3D&md5=c9b6bdb86985947437046f651fe05decCAS |

Britto DT, Kronzucker H (2002) NH4 + toxicity in higher plants: a critical review. Journal of Plant Physiology 159, 567–584.
NH4 + toxicity in higher plants: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCrtbc%3D&md5=734c32d0b7829bdbdae0f3a3d10a8e50CAS |

Brown CE, Pezeshki SR (2007) Threshhold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying. Journal of Plant Physiology 164, 274–282.
Threshhold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFCntr8%3D&md5=7767faf54ed7e7035c2f9119510a9fd5CAS | 16542750PubMed |

Bruce TJA, Matthes M, Napier JA, Pickett JA (2007) Stressful ‘memories’ of plants: evidence and possible mechanisms. Plant Science 173, 603–608.
Stressful ‘memories’ of plants: evidence and possible mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2hsbzE&md5=9152d176fd7200e4b58424388dd26dc9CAS |

Brun F, Olivé I, Malta E-J, Vergara JJ, Hernández I, Pérez-Lloréns JL (2008) Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series 365, 67–75.
Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency.Crossref | GoogleScholarGoogle Scholar |

Capiati DA, Pais SM, Téllez-Inon MT (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signaling. Journal of Experimental Botany 57, 2391–2400.
Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvF2lsro%3D&md5=45c0dd7037a0274d803f8cc5e59b4beaCAS | 16766597PubMed |

Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany 55, 225–236.
Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslWq&md5=b142c85fb9926448bc558710035c8bdaCAS | 14673035PubMed |

Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytologist 179, 964–974.
Flooding tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqurzM&md5=42000ad7cdadbc6b288c74a91150d853CAS | 18482227PubMed |

Colmer TD, Vos H, Pedersen O (2009) Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata. Annals of Botany 103, 303–312.
Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFCkuro%3D&md5=ef27e8ebbee6cd7be503dbf23780b4adCAS | 18660496PubMed |

Colmer TD, Pedersen O, Wetson AM, Flowers TJ (2013) Oxygen dynamics in salt-marsh soil in Suaeda maritima during tidal submergence. Environmental and Experimental Botany 92, 73–82.
Oxygen dynamics in salt-marsh soil in Suaeda maritima during tidal submergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVChtL8%3D&md5=5cd22e9ce6f8042bc7e9672949cd6420CAS |

Conrath U (2009) Priming of induced plant defense responses. Advances in Botanical Research 51, 361–395.
Priming of induced plant defense responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SlsrzP&md5=f6d8416ee415a4464eae89de8628efa2CAS |

Debez A, Huchzermeyer B, Abdelly C, Koyro H-W (2011) Current challenges and future opportunities for a sustainable utilization of halophytes. In ‘Tasks for vegetation science 46. Sabkha ecosystems’. (Eds M. Öztürk, B. Boer, H.-J. Barth, S.-W. Breckle, M. Clusener-Godt, M. A. Khan) pp. 111–119. (Springer-Verlag: Dordrecht, The Netherlands)

Dhar R, Sägesser R, Weikert C, Wagner A (2013) Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation. Molecular Biology and Evolution 30, 573–588.
Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitl2lur0%3D&md5=a50999a70b0645b877c94228a47ad715CAS | 23125229PubMed |

Dolferus R, Wolansky M, Carroll R, Miyashita Y, Ismond K, Good A (2008) Functional analysis of lactate dehydrogenase during hypoxic stress in Arabidopsis. Functional Plant Biology 35, 131–140.
Functional analysis of lactate dehydrogenase during hypoxic stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVKktbk%3D&md5=79271389ea17fb21d3e5ee9b897cb4fcCAS |

Ellouzi H, Ben Hamed K, Jana C, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte) seedlings. Physiologia Plantarum 142, 128–143.
Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte) seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFeru7c%3D&md5=69bd9f4bf373c393d61d80b4a4d9a6caCAS | 21288246PubMed |

Ellouzi H, Ben Hamed K, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237, 1311–1323.
Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFWltro%3D&md5=bae7d603c58be798384e6b80fa2f8bf5CAS | 23381736PubMed |

Flowers TJ (2004) Improving crop salt tolerance. Journal of Experimental Botany 55, 307–319.
Improving crop salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1egtQ%3D%3D&md5=ba62fd0b22f1d3b5393d8ae4f78ee465CAS | 14718494PubMed |

Flowers TJ, Colmer TD (2008) Salinty tolerance in halophytes. New Phytologist 179, 945–963.
Salinty tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FE&md5=06dcabcbf1411c34a35d7aed78f04afbCAS | 18565144PubMed |

Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37, 604–612.
Evolution of halophytes: multiple origins of salt tolerance in land plants.Crossref | GoogleScholarGoogle Scholar |

Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in physiological context. Plant, Cell & Environment 28, 1056–1071.
Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in physiological context.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslSgs70%3D&md5=081c2cef1cc8ab1223183f3a534fe008CAS |

Gális I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant, Cell & Environment 32, 617–627.
Molecular mechanisms underlying plant memory in JA-mediated defence responses.Crossref | GoogleScholarGoogle Scholar |

Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology 162, 1133–1140.
Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yktrrN&md5=accb6f6539546d033edf9e2f26fd6f40CAS | 16255171PubMed |

Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67, 72–79.
Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslOisA%3D%3D&md5=bb7b13525e69732a7e18f1510903cf63CAS | 17126878PubMed |

Glenn EP, Brown JJ (1998) Effects of soil salt levels on growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. American Journal of Botany 85, 10–16.
Effects of soil salt levels on growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVCktrk%3D&md5=5d84f2164a8777a58ea64b630d265562CAS |

Glenn EP, Nelson SG, Ambrose B, Martinez R, Soliz D, Pabendinskas V, Hultine K (2012) Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environmental and Experimental Botany 83, 62–72.
Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOrsbk%3D&md5=8f004cd04d2867fb7d292dca7459906dCAS |

Goh C-H, Gil Nam H, Shin Park Y (2003) Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entertained Arabidopsis plants. The Plant Journal 36, 240–255.
Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entertained Arabidopsis plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1OgtLY%3D&md5=1d6cb1cede406543b41d186c1bda4039CAS | 14535888PubMed |

Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal 44, 826–839.
Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWltrbN&md5=620030b0bcdb8cf64087da8a830c4207CAS | 16297073PubMed |

Gorai M, Ennajeh M, Khemira H, Neffati M (2010) Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora 205, 462–470.
Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants.Crossref | GoogleScholarGoogle Scholar |

Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany 98, 9–32.
Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslWhtr0%3D&md5=91b6bc625b3844445a6479e6d9d76974CAS | 16644893PubMed |

Han R-M, Lefèvre I, Albacete A, Pérez-Alfocéa F, Barba-Espin G, Diaz-Vivancos P, Quinet M, Ruan C-J, Hernandez J-A, Cantero-Nazvarro E, Lutts S (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiologia Plantarum 147, 352–368.
Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlKjsr4%3D&md5=cc786c8651c8f0bbf1f0db896afc808fCAS | 22697433PubMed |

Hessini K, Gandour M, Megdich W, Soltani A, Abdely C (2009a) How does ammonium nutrition influence salt tolerance in Spartina alterniflora Loisel? In ‘Tasks for vegetation series 44. Salinity and water stress’. (Eds M Ashraf, MH Athar, M Öztürk) pp. 91–96. (Springer-Verlag: Dordrecht, The Netherlands)

Hessini K, Lachaâl M, Cruz C, Soltani A (2009b) Role of ammonium to limit nitrate accumulation and to increase water economy in wild swiss chard. Journal of Plant Nutrition 32, 821–836.
Role of ammonium to limit nitrate accumulation and to increase water economy in wild swiss chard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVCltrw%3D&md5=aa6543d334c6eae12ce8d3d2e69fee9eCAS |

Hessini K, Cruz C, Gandour M, Debez A, Koyro H-W, Huchzermeyer B, Abdelly C (2011) Ammonium nutrition improves salt tolerance of Spartina alterniflora. European Journal of Plant Science and Biotechnology 5, 33–36.

Hessini K, Ben Hamed K, Gandour M, Abdelly C, Cruz C (2013) Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium. Plant and Soil
Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium.Crossref | GoogleScholarGoogle Scholar | in press

Jaskiewicz M, Conrath U, Peterhänel C (2011) Chromatin modification acts as a memory for system acquired resistance in the plant stress response. EMBO Reports 12, 50–55.
Chromatin modification acts as a memory for system acquired resistance in the plant stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajurjP&md5=3071becb21b0274678df6003be90a683CAS | 21132017PubMed |

Jenkins S, Barrett-Lennard EG, Rengel Z (2010) Impact of waterlogging and salminity on puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum): zonation on saltland with a shallow water-table, plant growth, and Na+ and K+ concentrations in the leaves. Plant and Soil 329, 91–104.
Impact of waterlogging and salminity on puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum): zonation on saltland with a shallow water-table, plant growth, and Na+ and K+ concentrations in the leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFGlu7Y%3D&md5=db7f170e1256c0050c3fce1ded4b9562CAS |

Jiang L, Wang L, Yin C-H, Tian C-Y (2012) Differential salt tolerance and similar responses to nitrogen availability in plants grown from dimorphic seeds of Suaeda salsa. Flora 207, 565–571.
Differential salt tolerance and similar responses to nitrogen availability in plants grown from dimorphic seeds of Suaeda salsa.Crossref | GoogleScholarGoogle Scholar |

Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidant response mechanisms in halophytes: their role in stress defense. Journal of Genetics 85, 237–254.
Antioxidant response mechanisms in halophytes: their role in stress defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVCmtLc%3D&md5=8908bfb0fdcca87b70055646c8b649e5CAS | 17406103PubMed |

Kant S, Bi YM, Weretilnyk E, Barak S, Rothstein SJ (2008) The Arabidopsis halophytic relative Thelungiella halophila tolerates nitrogen limiting conditions by maintaining growth, nitrogen uptake, and assimilation. Plant Physiology 147, 1168–1180.
The Arabidopsis halophytic relative Thelungiella halophila tolerates nitrogen limiting conditions by maintaining growth, nitrogen uptake, and assimilation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyis7g%3D&md5=5f5e6c228987df41eab3879797c7f133CAS | 18467466PubMed |

Kholodova VP, Volkov KS, Kuznetson KLK (2005) Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 52, 748–757.
Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1enu7rP&md5=f9167474d2ffce76d1f4012b01d14ef1CAS |

Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends in Plant Science 6, 262–267.
Abiotic stress signaling pathways: specificity and cross-talk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjs7Y%3D&md5=aa0112628be817fd39053957bfb8909eCAS | 11378468PubMed |

Kudo N, Fujiyama H (2010) Responses of halophyte Salicornia bigelovii to different forms of nitrogen source. Pedosphere 20, 311–317.
Responses of halophyte Salicornia bigelovii to different forms of nitrogen source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslOru7w%3D&md5=8fa8f80e7eaf50e7ee51d38776d75a42CAS |

Lefèvre I, Marchall G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany 65, 142–152.
Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L.Crossref | GoogleScholarGoogle Scholar |

Leidi EO, Silberbush M, Lips SH (1991) Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition. Journal of Plant Nutrition 14, 235–246.
Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVyhu7g%3D&md5=ab446f646a0478135535a22d32097f03CAS |

Lewis OAM, Leidi EO, Lips SH (1989) Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytologist 111, 155–160.
Effect of nitrogen source on growth response to salinity stress in maize and wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvFWksbs%3D&md5=8020283f76c65f0a4ccf4a1c13b1a1b0CAS |

Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. Journal of Experimental Botany 60, 1427–1438.
Molecular regulators of phosphate homeostasis in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktV2nuro%3D&md5=862c184b30b43c3375b26799ad286c2cCAS | 19168668PubMed |

Long SP, Woolhouse HW (1979) Primary Production in Spartina marshes. In ‘Ecological processes in coastal environments’. (Eds RL Jefferies, AJ Davy) pp. 333–354. (Blackwell Scientific Publication: Oxford, UK).

Lu YX, Li CJ, Zhang FS (2005) Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels. Annals of Botany 95, 991–998.
Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVWqtL0%3D&md5=fa202a17816fb9466603bad3a132ab1aCAS | 15749752PubMed |

Lutts S, Lefèvre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality 33, 1271–1279.
Heavy metal accumulation by the halophyte species Mediterranean saltbush.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFKhsbc%3D&md5=195c4029876a3b12c5f8344c52d14f28CAS | 15254108PubMed |

Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiology 32, 4–13.
Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVCmt7Y%3D&md5=799a0c145cf3d3a4d3d01f99ddc474dbCAS | 21979327PubMed |

Mahmood T, Kaiser WM (2003) Growth and solute composition of the salt-tolerant kallar grass (Leptochloa fusca (L.) Kunth) as affected by nitrogen source. Plant and Soil 252, 359–366.
Growth and solute composition of the salt-tolerant kallar grass (Leptochloa fusca (L.) Kunth) as affected by nitrogen source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVKnuro%3D&md5=0f85e1b23fe750b576454de080e6231cCAS |

Mahon S, Carman KR (2008) The influence of salinity on the uptake, distribution, and excretion of metals by the smooth cordgrass, Spartina alterniflora (Loisel.), grown in sediment contaminated by multiple metals. Estuaries and Coasts 31, 1089–1097.
The influence of salinity on the uptake, distribution, and excretion of metals by the smooth cordgrass, Spartina alterniflora (Loisel.), grown in sediment contaminated by multiple metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFKhsb0%3D&md5=b32093f2226d40dae18830f2e3528e15CAS |

Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environmental Science and Pollution Research 16, 844–854.
Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOkurzM&md5=a7ae8c5cfde157dfe71bbdd41868e1b0CAS | 19597858PubMed |

Manousaki E, Kalogerakis N (2011) Halophytes-an emerging trend in phytoremediation. International Journal of Phytoremediation 13, 959–969.
Halophytes-an emerging trend in phytoremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVemtb0%3D&md5=35fd9ce098ec25f859604eb90edfb393CAS | 21972564PubMed |

Martinez JB, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany 56, 2421–2431.
NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVahtLjM&md5=7074276ea74c16b1389838ea5b0370fdCAS |

Milić D, Luković J, Ninkov J, Zeremski-Škoric T, Zoric L, Vasin J, Milić S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Central European Journal of Biology 7, 307–317.
Heavy metal content in halophytic plants from inland and maritime saline areas.Crossref | GoogleScholarGoogle Scholar |

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends in Plant Science 11, 15–19.
Abiotic stress, the field environment and stress combination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVKjsw%3D%3D&md5=ebbf428bd1a356e9c1d2601ae45d60adCAS | 16359910PubMed |

Mittler R, Blumwald E (2010) Genetic engineering of for modern agriculture: challenges and perspectives. Annual Review of Plant Biology 61, 443–462.
Genetic engineering of for modern agriculture: challenges and perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsLc%3D&md5=08c68af50ae25d11dcb90973db7f0af4CAS | 20192746PubMed |

Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signalling underpinning stress tolerance. Plant Physiology 161, 5–19.
The impact of global change factors on redox signalling underpinning stress tolerance.Crossref | GoogleScholarGoogle Scholar | 23151347PubMed |

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Comparative physiology of salt and water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslakurw%3D&md5=4b241e0ff1eba2f3fa3d1e323ab7e87aCAS |

Munzarova E, Lorenzen B, Brix H, Vojtiskova L, Votrubova O (2006) Effect of NH4 +/NO3 – availability on nitrate reductase activity and nitrogen accumulation in wetland halophytes Phragmites australis and Glyceria maxima. Environmental and Experimental Botany 55, 49–60.
Effect of NH4 +/NO3 availability on nitrate reductase activity and nitrogen accumulation in wetland halophytes Phragmites australis and Glyceria maxima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKnsbzN&md5=11416740530f7dd76d041aeb460968cfCAS |

Naidoo G (1987) Effect of salinity and nitrogen on growth and water relations in the mangrove, Avicennia marina (Forsck.) Vierth. New Phytologist 107, 317–325.
Effect of salinity and nitrogen on growth and water relations in the mangrove, Avicennia marina (Forsck.) Vierth.Crossref | GoogleScholarGoogle Scholar |

Naidoo G (1990) Effects of nitrate, ammonium and salinity on growth of the mangrove Bruguiera gymnorrhiza (L.) lam. Aquatic Botany 38, 209–219.
Effects of nitrate, ammonium and salinity on growth of the mangrove Bruguiera gymnorrhiza (L.) lam.Crossref | GoogleScholarGoogle Scholar |

Nemat Alla MM, Khedr AHA, Erag MM, Abu-alnaga AZ, Nada RM (2011) Physiological aspects of tolerance in Atriplex halimus to NaCl and drought. Acta Physiologiae Plantarum 33, 547–557.
Physiological aspects of tolerance in Atriplex halimus to NaCl and drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVKmu7c%3D&md5=06b8adc43fc9d496c8a60298d78535ffCAS |

Nieman RH, Clark RA (1976) Interactive effects of salinity and P nutrition on the concentrations of phosphate and phosphate esters in mature photosynthesizing corn leaves. Plant Physiology 57, 157–161.
Interactive effects of salinity and P nutrition on the concentrations of phosphate and phosphate esters in mature photosynthesizing corn leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhslyrtLw%3D&md5=c9a367dc2417c9f3aa0e8479741cfb9dCAS | 16659441PubMed |

Qadir M, Oster JD, Schubet S, Murtaza G (2006) Vegetative bioremediation of sodic and saline-sodic soils for productivity enhancement and environment conservation. In ‘Biosaline agriculture and salinity tolerance in plants’. (Eds M Öztürk, Y Waisel, MA Khan) pp. 137–146. (Birkhaüser Verlag: Basel, Switzerland)

Qiu-Fang Z, Yuan-Yuan L, Cai-Hong P, Cong-Ming L, Bao-Shan W (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Science 168, 423–430.
NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L.Crossref | GoogleScholarGoogle Scholar |

Rabhi M (2011) ‘Le phytodessalement: approche biologique de dessalement des sols’. (Editions Universitaires Européennes: Saabrücken) [In French]

Raghothama KG (1999) Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50, 665–693.
Phosphate acquisition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yktrs%3D&md5=41e4ede507a44e82a42eb2dd1f812ff2CAS | 15012223PubMed |

Reboreda R, Caçador I (2007) Halophyte vegetation influences salt marsh retention capacity for heavy metals. Environmental Pollution 146, 147–154.
Halophyte vegetation influences salt marsh retention capacity for heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlartro%3D&md5=76c72f094492e1859529b1c54a50aa7bCAS | 16996176PubMed |

Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Functional Plant Biology
Bioaccumulation of heavy metals in Spartina.Crossref | GoogleScholarGoogle Scholar |

Redondo-Gómez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R, Valera-Burgos J, Aroca R (2011) Synergic effect of salinity and zinc stress on growth and 19 photosynthetic responses of the cordgrass Spartina densiflora. Journal of Experimental Botany 62, 5521–5530.
Synergic effect of salinity and zinc stress on growth and 19 photosynthetic responses of the cordgrass Spartina densiflora.Crossref | GoogleScholarGoogle Scholar | 21841175PubMed |

Rengel Z (1992) The role of calcium in salt toxicity. Plant, Cell & Environment 15, 625–632.
The role of calcium in salt toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlSjtL4%3D&md5=2dd1977b1ba9e329b4156423baec7757CAS |

Rivoal J, Hanson AD (1993) Evidence for a large and sustained glycolytic flux to lactate in anoxic roots of some members of the halophytic genus of Limonium. Plant Physiology 101, 553–560.

Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense patways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134, 1683–1696.
When defense patways collide: the response of Arabidopsis to a combination of drought and heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmsbs%3D&md5=d9e844edb88c1fffa807eff545cac654CAS | 15047901PubMed |

Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. The Plant Cell 8, 1809–1819.

Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30, 157–161.
Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGltbk%3D&md5=970424f327aaad7ae392a8bac45c1544CAS |

Shabala S, Mackay A (2011) Ion transport in halophytes. Advances in Botanical Research 57, 151–199.
Ion transport in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1Sit74%3D&md5=d86d24c3774e60f11dc40546278fcb8fCAS |

Shani U, Dudley LM (2001) Field studies of crop response to water and salt stress. Soil Science Society of America Journal 65, 1522–1528.
Field studies of crop response to water and salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlai&md5=0388475cb276cba2ae32fa41130a17b6CAS |

Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiology 140, 613–623.
Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2iurw%3D&md5=04ad9f581feb283f12e25922b764af87CAS | 16384901PubMed |

Slama I, Ghnaya T, Hessini K, Messeddi D, Savouré A, Abdelly C (2007a) Comparative study of mannitol and PEG osmotic stress effects on growth, proline and soluble sugars accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany 61, 10–17.
Comparative study of mannitol and PEG osmotic stress effects on growth, proline and soluble sugars accumulation in Sesuvium portulacastrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSjs7nI&md5=732afa05795371a90be4579c3aa02c31CAS |

Slama I, Ghnaya T, Messeddi D, Hessini K, Labidi N, Savouré A, Abdelly C (2007b) Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. Journal of Plant Research 120, 291–299.
Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVSht7w%3D&md5=fe5417b83db9e4364dc0e257fb0a903aCAS | 17219010PubMed |

Slama I, Ghnaya T, Savouré A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. Comptes Rendus Biologies 331, 442–451.
Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFyktrs%3D&md5=cab0730828bb13a409b558e8b5c3213dCAS | 18510997PubMed |

Sleimi N, Abdelly C (2002) Growth and mineral nutrition of some halophytes under seawater irrigation. In ‘Prospects for saline agriculture’. (Eds R Ahmad, KA Malik) pp. 403–410. (Kluwer Academic Publisher: Dordrecht, The Netherlands)

Ślesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediates C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture. Plant Science 164, 497–505.
Superoxide dismutase-like protein from roots of the intermediates C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture.Crossref | GoogleScholarGoogle Scholar |

Smaoui A, Barhoumi Z, Rabhi M, Abdelly C (2011) Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma 248, 363–372.
Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOjtL4%3D&md5=ca3c901a39abc50e2fe646ce311c71e4CAS | 20652337PubMed |

Song J, Ding X, Feng G, Zhang F (2006) Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophytes in saline conditions. New Phytologist 171, 357–366.
Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophytes in saline conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFejs7k%3D&md5=05482b681c9a7767e738cc923e9f4ca4CAS | 16866942PubMed |

Song J, Shi G, Xing S, Yin C, Fan H, Wang B (2009) Ecopgysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. Aquatic Botany 91, 311–317.
Ecopgysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKntr3O&md5=745393b88cba45b504c33c917219a765CAS |

Song J, Shi G, Gao B, Fan H, Wang B (2011) Waterlogging and salinity effects on two Suaeda salsa populations. Physiologia Plantarum 141, 343–351.
Waterlogging and salinity effects on two Suaeda salsa populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlars7c%3D&md5=c14d0faf4dea6c0c2e9e989b5c14830cCAS | 21214881PubMed |

Stewart GR, Lee JA, Orkbamjo TO (1972) Nitrogen metabolism of halophytes. I. Nitrate reductase activity in Suaeda maritima. New Phytologist 71, 263–267.
Nitrogen metabolism of halophytes. I. Nitrate reductase activity in Suaeda maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksVGmur0%3D&md5=320ce5344dbb69f75d24d51c6bed0d1dCAS |

Sucre B, Suarez N (2011) Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and growth in Ipomoea pes-caprae. Environmental and Experimental Botany 70, 192–203.
Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and growth in Ipomoea pes-caprae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGitbvJ&md5=ba83810f7ff2ac4e07470c073915cca5CAS |

Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97.
Proline: a multifunctional amino acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1yit7s%3D&md5=6ef05c7dd8725df8b7e99ff345554897CAS | 20036181PubMed |

Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis micorarray. Plant Physiology 135, 1697–1709.
Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis micorarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsb4%3D&md5=81e14fe696b5095bfb65704fa073072dCAS | 15247402PubMed |

Teakle NL, Real D, Colmer TD (2006) Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legume Lotus corniculatus and Lotus tenuis. Plant and Soil 289, 369–383.
Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legume Lotus corniculatus and Lotus tenuis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WnsrjP&md5=0add669e521ef3ae43938695817f2119CAS |

Teakle NL, Bowman S, Barrett-Lennard EG, Real D, Colmer TD (2012) Comparison of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has an exceptional tolerance to combinations of salinity and waterlogging. Environmental and Experimental Botany 77, 175–184.
Comparison of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has an exceptional tolerance to combinations of salinity and waterlogging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ontbg%3D&md5=43bb995c639181400d104750dd4284e5CAS |

Teakle NL, Bazihizina N, Shabala S, Colmer TD, Barrett-Lennard EG, Rodrigo-Moreno A, Läuchli AE (2013) Differential difference to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: the importance of K+ retention in roots. Environmental and Experimental Botany 87, 69–78.
Differential difference to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: the importance of K+ retention in roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1KrsLo%3D&md5=48d6b0116e2656a29778cae23127416cCAS |

Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum 102, 360–368.
Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2itbg%3D&md5=4b10647a8993e38fb8288f55c5c9d9adCAS |

Touchette BW, Burkholder JM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250, 133–167.
Review of nitrogen and phosphorus metabolism in seagrasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntV2jsL0%3D&md5=98d0e270211bf15bfde1000a73674c8eCAS | 10969167PubMed |

Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany in press

Wetson AM, Flowers TJ (2010) The effect of saline hypoxia on growth and ion uptake in Suaeda maritima. Functional Plant Biology 37, 646–655.
The effect of saline hypoxia on growth and ion uptake in Suaeda maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGnsrY%3D&md5=956a633df337ba1d13c86991c28fc40eCAS |

Wetson AM, Zörb C, John EA, Flowers TJ (2012) High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Annals of Botany 109, 1027–1036.
High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVSltbc%3D&md5=523af1206af06039232f8be31b2d6831CAS | 22316572PubMed |

Zaier H, Ghnaya T, Lakhdar A, Baiaoui R, Ghabriche R, Mnasri M, Sghaier S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. Journal of Hazardous Materials 183, 609–615.
Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtrjL&md5=8443ad7c0af7e92aea927f25c53bc670CAS | 20708335PubMed |

Zhu J, Meinzer FC (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Australian Journal of Plant Physiology 26, 79–86.
Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Zribi OT, Labidi N, Slama I, Debez A, Ksouri R, Rabhi M, Smaoui A, Abdelly C (2012) Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimum L. Plant Growth Regulation 66, 75–85.
Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFegsLvN&md5=a10bfc2e60a57d290d6cafba3ecd7ee6CAS |