Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Melting the secrets of gelatinisation temperature in rice

Rosa P. Cuevas A B , Venea D. Daygon A , Henry M. Corpuz A C D , Leilani Nora A , Russell F. Reinke E , Daniel L. E. Waters F and Melissa A. Fitzgerald A G
+ Author Affiliations
- Author Affiliations

A Grain Quality, Nutrition and Postharvest Centre, International Rice Research Institute, DAPO 7777 Metro Manila, Philippines.

B The University of Queensland, Centre for Nutrition and Food Sciences, Qld 4072, Australia.

C University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines.

D Philippine Rice Research Institute, Maligaya, Science City of Muñoz, Nueva Ecija 3119, Philippines.

E Rice Improvement Program, Yanco Agricultural Institute, NSW Department of Primary Industries, Yanco, NSW 2703, Australia.

F Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW 2480, Australia.

G Corresponding author. Email: m.fitzgerald@cgiar.org

Functional Plant Biology 37(5) 439-447 https://doi.org/10.1071/FP09258
Submitted: 28 October 2009  Accepted: 29 January 2010   Published: 30 April 2010

Abstract

Gelatinisation temperature (GT) is one of the key traits measured in programs for breeding rice (Oryza sativa L.). It is commonly estimated by the alkali spreading value (ASV), and less commonly by differential scanning calorimetry (DSC). Using a diverse set of germplasm, it was determined that DSC values associate poorly with ASV, are not correlated with amylose content but correlate with cooking time. Rice varieties are traditionally grouped into three classes of GT based on ASV: high, intermediate and low. However, the distribution of DSC values of 4000 samples shows only two classes: high and low. Large differences in the distributions of chain lengths synthesised by starch synthase IIa (SSIIa) support the two classes as the major grouping, two haplotypes associating with each peak. Each peak of DSC values spanned 10°C. The chain length distribution of the amylopectin molecules from varieties at the upper boundary of each peak showed significantly more chains that span both the crystalline and amorphous lamellae of a cluster than varieties at the other end of that distribution. Improved varieties, classified as intermediate GT by ASV, belong to both of the classes defined by DSC, implying that some enzyme, other than SSIIa is involved in intermediate GT.

Additional keywords: alkali spreading value, DSC values, rice, starch synthase IIa (SSIIa).


Acknowledgements

We thank Judith Dunn, Arvin Tuaño, Maria Cristina Virrey, Charlotte D’Aboville, Aureline Dolleans, Enofra Sandoval and Adoracion Resurreccion for contributing to the collection of either DSC, ASV or CE data and the staff of the TT Chang GRC for growing the GCP set. We also thank Harold Valera for assisting in the statistical analyses. RP Cuevas and MA Fitzgerald acknowledge the financial support of the Gates Foundation and RIRDC. HM Corpuz acknowledges financial support from Philrice.


References


American Association of Cereal Chemists (2000) ‘Approved methods of the American Association of Cereal Chemists.’ (American Association of Cereal Chemists: St. Paul, MN, USA)

Asaoka M, Okuno K, Yano M, Fuwa H (1993) Effects of shrunken and other mutations on the properties of rice endosperm starch. Starch – Stärke 45, 383–387.
CAS | Crossref |
open url image1

Ball SG, van de Wal M, Visser RGF (1998) Progress in understanding the biosynthesis of amylose. Trends in Plant Science 3, 462–467.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bao J-S, Wu YR, Hu B, Wu P, Cui HR, Shu QY (2002) QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica 128, 317–324.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bao J-S, Sun M, Zhu L-H, Corke H (2004) Analysis of quantitative trait loci for some starch properties of rice (Oryza sativa L.): thermal properties, gel texture and swelling volume. Journal of Cereal Science 39, 379–385.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bao J-S, Corke H, Sun M (2006) Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theoretical and Applied Genetics 113, 1171–1183.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bao J-S, Xiao P, Hiratsuka M, Sun M, Umemoto T (2009) Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch – Stärke 61, 431–437.
CAS | Crossref |
open url image1

Bundock P, Cross M, Shapter F, Henry RJ (2006) Robust allele-specific polymerase chain reaction markers developed for single nucleotide polymorphisms in expressed barley sequences. Theoretical and Applied Genetics 112, 358–365.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cao H, Imparl-Radosevich J, Guan H-P, Keeling PL, James MG, Myers AM (1999) Identification of the soluble starch synthase activities of maize endosperm. Plant Physiology 120, 205–216.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley CL, Smith AM (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. The Plant Cell 10, 413–426.
CAS | Crossref | PubMed |
open url image1

Demorest D, Dubrow R (1991) Factors influencing the resolution and quantitation of oligonucleotides separated by capillary electrophoresis on a gel-filled capillary. Journal of Chromatography. A 559, 43–56.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Dipti SS, Bari MN, Kabir KA (2003) Grain quality characteristics of some Beruin rice varieties of Bangladesh. Pakistan Journal of Nutrition 2, 242–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

El-Saied HM, Ahmed E-SA-G, Roushdi M, El-Attar WM (1979) Gelatinization, pasting characteristics and cooking behaviour of Egyptian rice varieties in relation to amylose and protein contents. Starch – Stärke 31, 270–274.
CAS | Crossref |
open url image1

Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends in Plant Science 14, 133–139.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiology 140, 1070–1084.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter 13, 207–209.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theoretical and Applied Genetics 98, 502–508.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Heda GD, Reddy GM (1986) Studies on the inheritance of amylose content and gelatinisation temperature in rice (Oryza sativa L.). Genetica Agraria 40, 1–8. open url image1

International Organization for Standardization (2007) ISO 6647–2: 2007 – Rice – Determination of amylose content – Part 2: routine methods. p. 10. (International Organization for Standardization: Geneva, Switzerland)

Jennings PR , Coffman W , Kauffman HE (1979) ‘Rice improvement.’ (University of the Philippines Los Banos: Laguna)

Jiang H, Dian W, Wu P (2003) Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 63, 53–59.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Juliano BO (1971) A simplified assay for milled-rice amylose. Cereal Science Today 16, 334–340. open url image1

Juliano BO (2003) ‘Rice chemistry and quality.’ (PhilRice: Munoz)

Juliano BO, Pascual CG (1980) Quality characteristics of milled rice grown in different countries. IRRI Research Paper Series 48, 3–25. open url image1

Juliano BO, Perez CM (1983) Major factors affecting cooked milled rice hardness and cooking time. Journal of Texture Studies 14, 235–243.
Crossref | GoogleScholarGoogle Scholar | open url image1

Juliano BO, Cagampang GB, Cruz LJ, Santiago RG (1964) Some physicochemical properties of rice in Southeast Asia. Cereal Chemistry 41, 275–285.
CAS |
open url image1

Juliano BO, Onate LU, del Mundo AM (1965) Relation of starch composition, protein content, and gelatinization temperature to cooking and eating qualities of milled rice. Food Technology 19, 116–121. open url image1

Juliano BO, Nazareno MB, Ramos NB (1969) Properties of waxy and isogenic nonwaxy rices differing in starch gelatinization temperature. Journal of Agricultural and Food Chemistry 17, 1364–1369.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kaosa-ard M , Juliano BO (1991) Assessing rice quality characteristics and prices in selected international markets. In ‘Rice grain marketing and quality issues’. (Eds BO Juliano, LR Pollard, G Argosino) pp. 23–36. (IRRI: Manila)

Khush GS (1995) Modern varieties – their real contribution to food supply and equity. GeoJournal 35, 275–284.
Crossref | GoogleScholarGoogle Scholar | open url image1

Khush GS , Juliano BO (1985) Breeding for high-yielding rices of excellent cooking and eating qualities. In ‘International rice research conference, 1–5 June 1985’. pp. 61–69. (IRRI: Los Banos, Laguna)

Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley PJ , et al . (2007) Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theoretical and Applied Genetics 115, 1053–1065.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Little RR, Hilder GB, Dawson EH (1958) Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chemistry 35, 111–126.
CAS |
open url image1

Liu QQ, Li QF, Cai XL, Wang HM, Tang SZ, Yu HX, Wang ZY, Gu MH (2006) Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Science 46, 2354–2360.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mackill DJ , Coffman W , Garrity DP (1996) ‘Rainfed lowland rice improvement.’ (IRRI: Manila)

Morell MK, Kosar-Hashemi B, Cmiel M, Samuel MS, Chandler P, Rahman S, Buleon A, Batey IL, Li Z (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal 34, 173–185.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T (2002) The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch – Stärke 54, 117–131.
CAS | Crossref |
open url image1

Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Molecular Biology 58, 213–227.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology 127, 459–472.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Normand FL, Marshall WE (1989) Differential scanning calorimetry of whole grain milled rice and milled rice flour. Cereal Chemistry 66, 317–320. open url image1

O’Shea MG, Samuel MS, Konik CM, Morell MK (1998) Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labelling and high-resolution separation. Carbohydrate Research 307, 1–12.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Pal S, Jain S, Saini N, Jain RK (2001) DNA isolation from milled rice samples for PCR-based molecular marker analysis. Rice Genetics Newsletter 18, 94–98. open url image1

Ranghino F (1966) Valutazzione della resistenza del riso alla cottyra, in base al tempo di gelatinizzazione dei granelli. Riso 15, 117–126. open url image1

Ryoo N, Yu C, Cheon-Seok P, Baik M-Y, Park I-M , et al . (2007) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports 26, 1083–1095.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sano Y (1984) Differential regulation of Waxy gene expression in rice endosperm. Theoretical and Applied Genetics 68, 467–473.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Seal AN, Pratley JE, Haig T (2008) Can results from a laboratory bioassay be used as an indicator of field performance of rice cultivars with allelopathic potential against Damasonium minus (starfruit)? Australian Journal of Agricultural Research 59, 183–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shu X-L, Shen S, Bao J-S, Wu D-X, Nakamura Y, Shu Q-Y (2006) Molecular and biochemical analysis of the gelatinization temperature characteristics of rice (Oryza sativa L.) starch granules. Journal of Cereal Science 44, 40–48.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Singh RK , Singh US , Khush GS , Rohilla R (2000) Genetics and biotechnology of quality traits in aromatic rices. In ‘Aromatic rices’. (Eds RH Singh, US Singh, GS Khush) pp. 47–70. (Mohan Primlani: New Delhi)

Singh N, Sodhi NS, Kaur M, Saxena SK (2003) Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chemistry 82, 433–439.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Slade L, Levine H (1988) Non-equilibrium melting of native granular starch: part I. Temperature location of the glass transition associated with gelatinisation of A-type cereal starches. Carbohydrate Polymers 8, 183–208.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Slade L , Levine H (1989) A food polymer science approach to selected aspects of starch gelatinization and retrogradation. In ‘Frontiers in carbohydrate chemistry. I: Food applications’. (Eds RP Millane, JN BeMiller, R Chandrasekaran) pp. 215–270. (Elsevier: London)

Tan Y, Corke H (2002) Factor analysis of physicochemical properties of 63 rice varieties. Journal of the Science of Food and Agriculture 82, 745–752.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theoretical and Applied Genetics 99, 642–648.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tan Y, Xing Y, Zhang Q, Sun M, Corke H (2001) Quantitative genetic basis of gelatinization temperature of rice. Cereal Chemistry 78, 666–674.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Functional Plant Biology 32, 763–768.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Umemoto T, Aoki N, Lin H, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S (2004) Natural variation in rice starch synthase IIa affects enzyme and starch properties. Functional Plant Biology 31, 671–684.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Vidal V, Pons B, Brunnschweiler J, Handschin S, Rouau X, Mestres C (2007) Cooking behavior of rice in relation to kernel physicochemical and structural properties. Journal of Agricultural and Food Chemistry 55, 336–346.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Waigh TA, Kato KL, Donald AM, Gidley MJ, Clarke CJ, Riekel C (2000) Side-chain liquid-crystalline model for starch. Starch – Stärke 52, 450–460.
CAS | Crossref |
open url image1

Wang J, Liu KD, Xu CG, Li XH, Zhang Q (1998) The high level of wide-compatibility of variety ‘Dular’ has a complex genetic basis. Theoretical and Applied Genetics 97, 407–412.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Wang LQ, Liu WJ, Xu Y, He YQ, Luo LJ, Xing YZ, Xu CG, Zhang Q (2007) Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theoretical and Applied Genetics 115, 463–476.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ward RM, Gao Q, de Bruyn H, Gilbert RG, Fitzgerald MA (2006) Improved methods for the structural analysis of the amylose-rich fraction from rice flour. Biomacromolecules 7, 866–876.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Waters DLE, Henry RJ, Reinke RF, Fitzgerald MA (2006) Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnology Journal 4, 115–122.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics 101, 21–29.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theoretical and Applied Genetics 106, 326–331.
CAS | PubMed |
open url image1