Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Housekeeping gene selection in poplar plants under Cd-stress: comparative study for real-time PCR normalisation

Brigitta Basa A , Ádám Solti A , Éva Sárvári A and László Tamás A B
+ Author Affiliations
- Author Affiliations

A Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117, Budapest, Hungary.

B Corresponding author. Email: tamasl@ludens.elte.hu

Functional Plant Biology 36(12) 1079-1087 https://doi.org/10.1071/FP09073
Submitted: 3 April 2009  Accepted: 20 August 2009   Published: 3 December 2009

Abstract

Real-time RT–PCR is currently the most sensitive, specific and precise approach to analyse gene expression changes in plant stress studies. The determination of biologically meaningful transcript quantities requires accurate normalisation of the raw data. During relative quantification the reliability of the results depends on the stable expression of the endogenous control genes across the experimental samples. Four widely used internal control genes (cyclophilin, elongation factor 1α, polyubiquitin, tubulin β-chain) and two potential candidates (serine/threonine-protein phosphatase 2A and ubiquitin-conjugating enzyme) genes were assessed under Cd-stress and at different developmental stages in leaves of Populus jacquemontiana D. var. glauca H. Complementary DNA (RiboGreen) based quantification method revealed variations in the expression level of reference genes. The variability was more pronounced under severe stress conditions. Less variation was observed in the case of ef-1α, pp2a and ubc10. Transcript level changes of a target gene, psa-h, was also evaluated by two independent normalisation strategies, by the RiboGreen method or by using multiple references. The impact of variability of reference gene on the target gene evaluation was demonstrated. It was proved that in the absence of suitable housekeeping genes, for example under severe stress, RiboGreen method is convenient tool for transcript normalisation.

Additional keywords: Populus, qRT-PCR, reference gene, RiboGreen, validation.


References


Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition 13, 1–37.
Crossref | GoogleScholarGoogle Scholar | open url image1

Benavides M, Gallego S, Tomaro M (2005) Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17, 21–34.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bertrand M, Poireir I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43, 345–353.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology 4, 14.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25, 169–193.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR – a perspective. Journal of Molecular Endocrinology 34, 597–601.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cheng Q, Zhang B, Zhuge Q, Zeng Y, Wang M, Huang M (2006) Expression profiles of two novel lipoxygenase genes in Populus deltoides. Plant Science 170, 1027–1035.
Crossref | GoogleScholarGoogle Scholar | open url image1

Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707–1719.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5–17.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227, 625–639.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dubery IA (2007) An elicitor- and pathogen-induced cDNA from potato encodes a stress-responsive cyclophilin. Biologia Plantarum 51, 327–332.
Crossref | GoogleScholarGoogle Scholar | open url image1

Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology 8, 131.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica et Biophysica Acta – Bioenergetics 1706, 158–164.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fluch S, Olmo CC, Tauber S, Stierschneider M, Kopecky D, Reichenauer TG, Matuníková I (2008) Transcriptomic changes in wind-exposed poplar leaves are dependent on developmental stage. Planta 228, 757–764.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fodor F (2002) Physiological responses of vascular plants to heavy metals. In ‘Physiology and biochemistry of metal toxicity and tolerance in plants’. (Eds MNV Prasad, K Strzalka) pp. 149–177. (Kluwer Academic Publishers: Dordrecht)

Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. Journal of Experimental Botany 56, 3017–3027.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92. open url image1

Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews 82, 373–428.
PubMed |
open url image1

Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32, 481–494.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF , et al. (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal 6, 609–618.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-LM , et al. (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88, 1751–1765.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hodoshima H, Enomoto Y, Shoji K, Shimada H, Goto F, Yoshihara T (2007) Differential regulation of cadmium-inducible expression of iron-deficiency-responsive genes in tobacco and barley. Physiologia Plantarum 129, 622–634.
Crossref | GoogleScholarGoogle Scholar | open url image1

Huggett J, Dheda K, Bustinand S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes and Immunity 6, 279–284.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications 345, 646–651.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N (2007) Statistical significance of quantitative PCR. BMC Bioinformatics 8, 131.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters 25, 1869–1872.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau O-S, Deng X-W, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiology 139, 1597–1611.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Krupa Z, Baszynski T (1995) Some aspects of heavy-metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions. Acta Physiologiae Plantarum 17, 177–190. open url image1

Küpper H, Seib LO, Sivaguru M, Hoekenga OA, Kochian LV (2007a) A method for cellular localization of gene expression via quantitative in situ hybridization in plants. The Plant Journal 50, 159–187.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Küpper H, Parameswaran A, Leitenmaier B, Trtilek M, Setlik I (2007b) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytologist 175, 655–674.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Libus J, Štorchová H (2006) Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. BioTechniques 41, 156–164.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ma H (1993) Protein phosphorylation in plants: enzymes, substrates and regulators. Trends in Genetics 9, 228–230.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum 29, 177–187.
Crossref | GoogleScholarGoogle Scholar | open url image1

Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany 50, 265–276.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56, 2907–2914.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ (2007) Differential expansion and expression of alpha- and beta-tubulin gene families in Populus. Plant Physiology 145, 961–973.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pagliano C, Raviolo M, Dalla Vecchia F, Gabrielli R, Gonnelli C , et al. (2006) Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). Journal of Photochemistry and Photobiology. B, Biology 84, 70–78.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal 32, 539–548.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany 35, 525–545.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters 339, 62–66.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227, 1343–1349.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Romano PGN, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiology 134, 1268–1282.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sanità di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41, 105–130.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sharma AD, Singh P (2003) Effect of water stress on expression of a 20 kD cyclophilin-like protein in drought susceptible and tolerant cultivars of sorghum. Journal of Plant Biochemistry and Biotechnology 12, 77–80. open url image1

Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan L.). Photosynthesis Research 23, 345–351.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sigfridsson KGV, Bernat G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with Photosystem II. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1659, 19–31.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smalle J, Vierstra RD (2004) The ubiquitin 26s proteasome proteolytic pathway. Annual Review of Plant Physiology and Plant Molecular Biology 55, 555–590.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany 63, 1–8.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smith RD, Walker JC (1996) Plant protein phosphatases. Annual Review of Plant Physiology and Plant Molecular Biology 47, 101–125.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Solti Á, Gáspár L, Mészáros I, Szigeti Z, Lévai L, Sárvári É (2008) Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed Poplar (Populus glauca). Annals of Botany 102, 771–782.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ståhlberg A, Hakansson J, Xian XJ, Semb H, Kubista M (2004) Properties of the reverse transcription reaction in mRNA quantification. Clinical Chemistry 50, 509–515.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum 63, 293–298.
Crossref | GoogleScholarGoogle Scholar | open url image1

Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant, Cell & Environment 24, 1177–1188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tsai C-J, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist 172, 47–62.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant, Cell & Environment 13, 195–206.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research0034.1–research0034.11.
Crossref | GoogleScholarGoogle Scholar | open url image1

Volkov RA, Panchuk II, Schoffl F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. Journal of Experimental Botany 54, 2343–2349.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell & Environment 29, 950–963.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39, 75–85.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. Journal of Experimental Botany 58, 659–671.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1