Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Mobilisation and distribution of starch and total N in two grapevine cultivars differing in their susceptibility to shedding

Christophe Zapata A , Eliane Deléens B , Sylvain Chaillou C and Christian Magné A D
+ Author Affiliations
- Author Affiliations

A Université de Reims Champagne-Ardenne, UFR Sciences, Laboratoire de Biologie et Physiologie Végétales, UPRES EA 2069 (URVVC), BP 1039, 51687 Reims Cedex 2, France.

B Institut de Biotechnologie des Plantes, URA CNRS 1128, Université de Paris-Sud, Orsay, France (deceased).

C Institut National Agronomique de Paris Grignon, Laboratoire de Physiologie Végétale, Paris, France.

D Present address: Université de Bretagne Occidentale, LEBHAM / IUEM, EA 3877, Technopole Brest Iroise, 29280 Plouzané, France. Corresponding author. Email: christian.magne@univ-brest.fr

Functional Plant Biology 31(11) 1127-1135 https://doi.org/10.1071/FP04028
Submitted: 5 February 2004  Accepted: 23 September 2004   Published: 18 November 2004

Abstract

As a part of a project aimed at elucidating the causal relationship between reserve mobilisation and the extent of shedding in Vitis vinifera L., we compared storage and fate of carbon (C) and nitrogen (N) reserves in two varieties differing in their susceptibility to fruitlet abscission. Merlot (susceptible) and Pinot Noir (P. Noir, not susceptible) vines were grown in trenches under semi-controlled conditions over a 3-y period after planting. Mobilisation of stored C and N, distribution of reserve materials within the vines and 15N uptake were followed particularly during the spring growth flush and floral development in the third year. At dormancy, starch levels in the perennial tissues (roots, trunk, canes) were higher in Merlot than in P. Noir. During the spring growth flush, starch level decreased markedly in the roots of both cultivars until early bloom. At that time, starch started to accumulate in P. Noir but not in Merlot. Similar variations were found with total N. Accordingly, 15N analysis showed that translocation of storage N to the annual tissues was nearly achieved at early bloom in P. Noir while it continued until pea berry size in Merlot. In parallel, N uptake increased during the spring growth flush, and it was higher in P. Noir than in Merlot. These results indicate that transition between heterotrophic (root) and autotrophic (leaf) mode of nutrient allocation towards the developing inflorescences occurs earlier in P. Noir. Possible consequences are discussed in relation to the susceptibility of each cultivar to shedding.

Keywords: nitrogen uptake, reserve mobilisation, shedding, starch, Vitis vinifera.


Acknowledgements

We thank SA Mumm Perrier-Jouët Vignobles et Recherches, Epernay (France) for funding the PhD grant to C Zapata and the inter-region VVS research network for financial support.


References


Andersen PE, Brodbeck BV (1989) Diurnal and temporal changes in the chemical profile of xylem exudate from Vitis rotundifolia L. Physiologia Plantarum 75, 63–70. open url image1

Araujo FJ, Williams LE (1988) Dry matter and nitrogen partitioning and root growth of young field-grown Thompson Seedless grapevines. Vitis 27, 21–32. open url image1

Broquedis M, Lespy-Labaylette P, Bouard J (1996) Les polyamines et leur effet anti-coulure chez la vigne. Journal International des Sciences de la Vigne et du Vin 30, 55–58. open url image1

Buttrose MS (1970) Fruitfulness in grapevines: the response of different cultivars to light, temperature and day length. Vitis 9, 455–464. open url image1

Caspari HW, Lang A, Alspach P (1998) Effects of girdling and leaf removal on fruit set and vegetative growth in grape. American Journal of Enology and Viticulture 49, 359–366. open url image1

Coïc F, Lesaint L (1971) Comment assurer une bonne nutrition en eau et en ions minéraux en horticulture. Horticulture Française 8, 11–14. open url image1

Conradie WJ (1980) Seasonal uptake of nutrients by Chenin blanc in sand culture. I. Nitrogen. South African Journal of Enology and Viticulture 1, 59–65. open url image1

Conradie WJ (1983) The uptake and distribution of 15N enriched nitrate by time of application and soil type. South African Journal of Enology and Viticulture 4, 45–47. open url image1

Conradie WJ (1986) Utilization of nitrogen by the grapevine as affected by time of application and soil type. South African Journal of Enology and Viticulture 7, 76–83. open url image1

Conradie, WJ (1991). Translocation and storage of nitrogen by grapevines as affected by time of application. In ‘Proceeding of the international symposium on nitrogen in grape and wine’. Seattle, WA. pp. 32–42.

Deléens E, Cliquet JB, Prioul JL (1994) Using 13C and 15N label near natural abundance for monitoring carbon and nitrogen partitioning. Australian Journal of Plant Physiology 21, 133–146. open url image1

Ebadi A, Coombe BG (1996) Effect of short-term temperature and shading on fruit set, seed and berry development in model vines of V. vinifera cv. Chardonnay and Shiraz. Australian Journal of Grape and Wine Research 2, 2–9. open url image1

Eichhorn KW, Lorenz DH (1977) Phänologische Entwicklungsstadien der Rebe. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes (Braunschweig) 29, 119–120. open url image1

Ewart A, Kliewer WM (1977) Effects of controlled day and night temperatures and nitrogen on fruit set, ovule fertility, and fruit composition of several wine grape cultivars. American Journal of Enology and Viticulture 28, 88–95. open url image1

Fournioux JC (1997) Influences foliaires sur le développement et la maturation des grappes. Progrès Agricole et Viticole 17, 359–372. open url image1

Glad C, Regnard JL, Querou Y, Brun O, Morot-Gaudry JF (1992) Flux and chemical composition of xylem exudates from Chardonnay grapevines: temporal evolution and effect of recut. American Journal of Enology and Viticulture 43, 275–282. open url image1

Gu S, Lombard PB, Price S (1996) Effect of shading and nitrogen source on growth, tissue ammonium and nitrate status and inflorescence necrosis in Pinot Noir grapevines. American Journal of Enology and Viticulture 47, 173–180. open url image1

Hügelschäffer P (1990) ‘Reaktionen von Reben (Vitis vinifera L.) cv Riesling und Müller-Thurgau auf Sommerschnittbehandlungen.’ PhD thesis (Universität Giessen: Germany)

Huglin, P ,  and  Schneider, C (1998). ‘Biologie et écologie de la vigne.’ (Tech and Doc: Paris)

Jackson DI (1991) Environmental and hormonal effects on development of early bunchstem necrosis. American Journal of Enology and Viticulture 42, 290–294. open url image1

Jean D, Lapointe L (2001) Limited carbohydrate availability as a potential cause of fruit abortion in Rubus chamaemorus. Physiologia Plantarum 112, 379–387.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Keller M, Arnink KJ, Hrazdina G (1998) Interaction of nitrogen availability during bloom and light intensity during veraison. I. Effects on grapevine growth, fruit development and ripening. American Journal of Enology and Viticulture 49, 333–340. open url image1

Keller M, Koblet W (1994) Is carbon starvation rather than excessive nitrogen supply the cause of inflorescence necrosis in Vitis vinifera L.? Vitis 33, 81–86. open url image1

Keller M, Koblet W (1995) Dry matter and leaf area partitioning, bud fertility and second season growth of Vitis vinifera L.: responses to nitrogen supply and limiting irradiance. Vitis 34, 77–83. open url image1

Kleeze RA, Smith LJ (1970) Scion control of genotypic differences in mineral salts accumulation in soyabean seeds. Annals of Botany 34, 183–188. open url image1

Kliewer, WM (1991). Methods for determining the nitrogen status of wineyards. In ‘Proceedings of the international symposium on nitrogen in grape and wine’. Seattle, WA. pp. 133–147.

Kriedemann P, Kliewer W, Harris J (1970) Leaf age and photosynthesis in Vitis vinifera L. Vitis 9, 97–103. open url image1

Langheinrich U, Tischner R (1991) Vegetative storage proteins in poplar. Plant Physiology 97, 1017–1025. open url image1

Loescher WH, McCamant T, Keller JD (1990) Carbohydrates reserves, translocation and storage in woody plant roots. HortScience 25, 274–281. open url image1

Löhnertz O (1988) Nährstoffelementaufnahme von Reben im Verlauf eines Vegetationszyklus. Mitteilung Klosterneuburg 38, 124–129. open url image1

Merjanian A, Ravaz V (1930) Sur la coulure de la vigne. Progrès Agricole et Viticole 49, 545–550. open url image1

Obbink JG, McE Alexander DE, Possingham JV (1973) Use of nitrogen and potassium reserves during growth of grape vine cuttings. Vitis 12, 207–213. open url image1

O’Kennedy BT, Titus JS (1979) Isolation and mobilization of storage proteins from apple shoot bark. Physiologia Plantarum 45, 419–424. open url image1

Ollat, N (1992). Nouaison chez Vitis vinifera L. cv Merlot Noir: rôle de l'intensité lumineuse et de la photosynthèse à la floraison. In ‘Piemont Journal of the 4th international symposium on grapevine physiology’. pp. 113–116. (Turin: Italy)

Peacock WL, Christensen LP, Brodbent FE (1989) Uptake, storage and utilization of soil-applied nitrogen by ‘Thompson Seedless’ as affected by the time of application. American Journal of Enology and Viticulture 40, 16–20. open url image1

Pouget R (1981) Action de la température sur la différenciation des inflorescences et des fleurs durant les phases de pré-débourrement des bourgeons latents de la vigne. Connaissance de la Vigne et du Vin 15, 65–79. open url image1

Rodrigo J, Hormaza JI, Herrero M (2000) Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiologia Plantarum 108, 35–41.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sauter JJ, Van Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8, 297–304.
Crossref |
open url image1

Schaller K, Löhnertz O, Geiben R, Breit N (1989) N-Stoffwechsel von Reben: N-und Arginindynamik im Holzkörper der Sorte Müller-Thurgau im Verlauf einer Vegetationsperiode. Wein-Wissenschaften 44, 91–101. open url image1

Scholefield PB, Neales TP, May P (1978) Carbon balance of the sultana vine (Vitis vinifera L.) and the effects of autumn defoliation by harvest pruning. Australian Journal of Plant Physiology 5, 561–570. open url image1

Williams, LE (1991). Vine nitrogen requirements. Utilization of N sources from soils, fertilizers and reserves. In ‘Proceedings of the international symposium on nitrogen in grape and wine’. Seattle, WA. pp. 62–66.

Yang YS, Hori Y, Ogata R (1980) Studies on retranslocation of accumulated assimilates in ‘Delaware’ grapevine. II. Retranslocation of assimilates accumulated during the previous growing season. Tohuku Journal of Agricultural Research 31, 109–119.
Crossref |
open url image1

Zapata C, Magné C, Deléens E, Brun O, Audran JC, Chaillou S (2001) Grapevine culture in trenches. I. Root growth and dry matter partitioning. Australian Journal of Grape and Wine Research 7, 127–131. open url image1

Zapata C, Audran JC, Magné C (2003) Grapevine culture in trenches. II. Reproductive characteristics and interaction with vegetative growth. Journal International des Sciences de la Vigne et du Vin 37, 85–90. open url image1

Zapata C, Deléens E, Chaillou S, Magné C (2004) Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.). Journal of Plant Physiology 161, 1031–1040.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zimmermann, MH (1971). Storage, mobilization and circulation of assimilates. In ‘Trees: structure and function’. pp. 307–322. (Springer-Verlag: Berlin)