Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Effects of arbuscular mycorrhizal fungi in the rhizosphere of two olive (Olea europaea) varieties Arbequina and Barnea under water deficit conditions

Mariana Bonetto A , Noelia Cofré https://orcid.org/0000-0002-5696-6598 B * , Franco Calvo A and Sonia Silvente C
+ Author Affiliations
- Author Affiliations

A Instituto de Agricultura Sostenible en el Oasis (IASO), Universidad Nacional de Chilecito (UNdeC), La Rioja, Argentina.

B Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina.

C Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA), Universidad Nacional de Chilecito (UNdeC), La Rioja, Argentina. Email: ssilvente@undec.edu.ar

* Correspondence to: ncofre@imbiv.unc.edu.ar

Handling Editor: Tim Cavagnaro

Functional Plant Biology 51, FP24108 https://doi.org/10.1071/FP24108
Submitted: 10 April 2024  Accepted: 25 June 2024  Published: 15 July 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

One strategy to improve olive (Olea europaea) tree drought tolerance is through the symbiosis of arbuscular mycorrhizal fungi (AMF), which helps alleviate water deficit through a combination of morphophysiological effects. Cuttings of olive varieties Arbequina (A) and Barnea (B) were grown with (+AMF) or without (−AMF) inoculum in the olive grove rhizosphere soil. One year after establishment, pots were exposed to four different water regimes: (1) control (100% of crop evapotranspiration); (2) short-period drought (20 days); (3) long-period drought (25 days); and (4) rewatering (R). To evaluate the influence of AMF on tolerance to water stress, stem water potential, stomatal conductance and the biomarkers for water deficit malondialdehyde, proline, soluble sugars, phenols, and flavonoids were evaluated at the end of the irrigation regimes. Stem water potential showed higher values in A(+) and B(+) in all water conditions, and the opposite was true for stomatal conductance. For proline and soluble sugars, the stem water potential trend is repeated with some exceptions. AMF inoculum spore communities from A(+ and −) and B(+ and −) were characterised at the morphospecies level in terms of richness and abundance. Certain morphospecies were identified as potential drought indicators. These results highlight that the benefits of symbiotic relationships between olive and native AMF can help to mitigate the effects of abiotic stress in soils affected by drought.

Keywords: Arbequina, Barnea, central-western Argentina, drought, Glomeromycotina morphospecies, Olea europaea L., plant variables, symbiotic relationships, water status.

References

Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology 169, 704-709.
| Crossref | Google Scholar | PubMed |

Alonso-Contreras R, Aguilera-Gómez LI, Rubí-Arriaga M, González-Huerta A, Olalde-Potugal V, Rivas-Manzano IV (2018) Influencia de hongos micorrícicos arbusculares en el crecimiento y desarrollo de Capsicum annuum L. Revista Mexicana de Ciencias Agrícolas 4, 77-88.
| Crossref | Google Scholar |

Bacelar EA, Correia CM, Moutinho-Pereira JM, Berta C, Gonçalves BC, Lopes JI, Torres-Pereira JMG (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology 24(2), 233-239.
| Crossref | Google Scholar | PubMed |

Bacelar EA, Moutinho-Pereira JM, Gonçalves BC, Lopes JI, Correia CM (2009) Physiological responses of different olive genotypes to drought conditions. Acta Physiologiae Plantarum 31, 611-621.
| Crossref | Google Scholar |

Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Feng H (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences 20(17), 4199.
| Crossref | Google Scholar | PubMed |

Bashan Y, Khaosaad T, Salazar BG, Ocampo JA, Wiemken A, Oehl F, Vierheilig H (2007) Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees 21, 329-335.
| Crossref | Google Scholar |

Ben Abdallah M, Trupiano D, Polzella A, De Zio E, Sassi M, Scaloni A, et al. (2018) Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology 220, 83-95.
| Crossref | Google Scholar | PubMed |

Ben Hassena A, Zouari M, Trabelsi L, Decou R, Ben Amar F, Chaari A, Soua N, Labrousse P, Khabou W, Zouari N (2021) Potential effects of arbuscular mycorrhizal fungi in mitigating the salinity of treated wastewater in young olive plants (Olea europaea L. cv. Chetoui). Agricultural Water Management 245, 106635.
| Crossref | Google Scholar |

Błaszkowski J (2012) ‘Glomeromycota.’ (W. Szafer Institute of Botany, Polish Academy of Sciences)

Boughalleb F, Hajlaoui H (2011) Physiological and anatomical changes induced by drought in two olive cultivars (cv Zalmati and Chemlali). Acta Physiologiae Plantarum 33, 53-65.
| Crossref | Google Scholar |

Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59(1), 39-46.
| Crossref | Google Scholar |

Brito C, Dinis L-T, Moutinho-Pereira J, Correia CM (2019) Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232.
| Crossref | Google Scholar |

Calvente R, Cano C, Ferrol N, Azcón-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Applied Soil Ecology 26, 11-19.
| Crossref | Google Scholar |

Carillo P, Gibon Y (2011) Protocol: extraction and determination of proline. Prometheus Wiki 2011, 1-5.
| Google Scholar |

Chandra P, Singh A, Prajapat K, Rai AK, Yadav RK (2022) Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environmental and Experimental Botany 201, 104982.
| Crossref | Google Scholar |

Chenchouni H, Mekahlia MN, Beddiar A (2020) Effect of inoculation with native and commercial arbuscular mycorrhizal fungi on growth and mycorrhizal colonization of olive (Olea europaea L.). Scientia Horticulturae 261, 108969.
| Crossref | Google Scholar |

Cofré N, Marro N, Grilli G, Soteras F (2022) Chapter 10. Arbuscular mycorrhizal fungi in agroecosystems of east-central Argentina: two agricultural practices effects on taxonomic groups. In ‘Mycorrhizal fungi in South America’. Fungal Biology (Eds MA Lugo, MC Pagano) pp. 203–218. (Springer: Cham, Switzerland)

Dichio B, Xiloyannis C, Angelopoulos K, Nuzzo V, Bufo SA, Celano G (2003) Drought-induced variations of water relations parameters in Olea europaea. Plant and Soil 257, 381-389.
| Crossref | Google Scholar |

Epstein E (1972) ‘Mineral nutrition of plants: principles and perspectives.’ (John Wiley and Sons: New York, NY, USA)

Estaún V, Camprubí A, Calvet C, Pinochet J (2003) Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. Journal of the American Society for Horticultural Science 128, 767-775.
| Crossref | Google Scholar |

Estrada B, Aroca R, Azcón-Aguilar C, Barea JM, Ruiz-Lozano JM (2013a) Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil 370, 175-185.
| Crossref | Google Scholar |

Estrada B, Aroca R, Azcón-Aguilar C, Barea JM, Ruiz-Lozano JM (2013b) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science 201-202, 42-51.
| Crossref | Google Scholar | PubMed |

Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K (2022) Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology 3, 723892.
| Crossref | Google Scholar |

Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science 2, 39.
| Crossref | Google Scholar |

Fernández-Lizarazo JC, Moreno-Fonseca LP (2016) Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agronomía Colombiana 34(2), 179-189.
| Crossref | Google Scholar |

Ferreyra R, Selles G, Lemus G (2002) Efecto del estrés hídrico durante la fase II del crecimiento del fruto del duraznero cv. Kakamas en el rendimiento y estado hídrico de las plantas. Agricultura Técnica 62(4), 565-573.
| Google Scholar |

Ferrol N, Calvente R, Cano C, Barea J-M, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Applied Soil Ecology 25(2), 123-133.
| Crossref | Google Scholar |

Fouad MO, Essahibi A, Benhiba L, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research 12(3), 763-771.
| Crossref | Google Scholar |

Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46(2), 235-244.
| Crossref | Google Scholar |

Gómez del Campo M, Morales-Sillero A, Vita Serman F, Rousseaux MC, Searles PS (2010) Olive growing in the arid valleys of Northwest Argentina (provinces of Catamarca, La Rioja and San Juan). Olivae 114, 23-45.
| Google Scholar |

Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycological Research 95(10), 1160-1162.
| Crossref | Google Scholar |

Gray SB, Brady SM (2016) Plant developmental responses to climate change. Developmental Biology 419, 64-77.
| Crossref | Google Scholar | PubMed |

Grilli G, Urcelay C, Galetto L (2012) Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecology 213, 155-165.
| Crossref | Google Scholar |

Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signaling & Behavior 7, 1456-1466.
| Crossref | Google Scholar | PubMed |

Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4), 604-611.
| Crossref | Google Scholar |

Irigoyen JJ, Einerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum 84, 55-60.
| Crossref | Google Scholar |

Jansa J, Erb A, Oberholzer H-R, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Molecular Ecology 23(8), 2118-2135.
| Crossref | Google Scholar | PubMed |

Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Applied Sciences 10(16), 5692.
| Crossref | Google Scholar |

Karadeniz F, Burdurlu HS, Koca N, Soyer Y (2005) Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry 29, 297-303.
| Google Scholar |

Longo S, Nouhra E, Goto BT, Berbara RL, Urcelay C (2014) Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management 315, 86-94.
| Crossref | Google Scholar |

Lu J, Liu M, Mao Y, Shen L (2007) Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild Jujube (Zizyphs spinosus Hu) seedlings. Frontiers of Agriculture in China 1, 468-471.
| Crossref | Google Scholar |

Madouh TA, Quoreshi AM (2023) The function of arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: a review. Diversity 15(3), 391.
| Crossref | Google Scholar |

Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, et al. (2022) The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytologist 235(1), 320-332.
| Crossref | Google Scholar | PubMed |

Martín MLS, Azcón R, Barea JM, Porras Soriano A, Goldaracena IM, Piedra AP (2006) Reduction of the juvenile period of new olive plantations through the early application of mycorrhizal fungi. Soil Science 171(1), 52-58.
| Crossref | Google Scholar |

Masmoudi CC, Ayachi MM, Gouia M, Laabidi F, Reguaya SB, Amor AO, Bousnina M (2010) Water relations of olive trees cultivated under deficit irrigation regimes. Scientia Horticulturae 125(4), 573-578.
| Crossref | Google Scholar |

Mathieu S, Cusant L, Roux C, Corradi N (2018) Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytologist 220, 1129-1134.
| Crossref | Google Scholar | PubMed |

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115, 495-501.
| Crossref | Google Scholar | PubMed |

Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: a possible mechanism for regulation of defense molecules. Journal of Plant Physiology 185, 40-43.
| Crossref | Google Scholar | PubMed |

Meddad-Hamza A, Hamza N, Neffar S, Beddiar A, Gianinazzi S, Chenchouni H (2017) Spatiotemporal variation of arbuscular mycorrhizal fungal colonization in olive (Olea europaea L.) roots across a broad mesic-xeric climatic gradient in North Africa. Science of The Total Environmental 583, 176-189.
| Crossref | Google Scholar |

Moriana A, Pérez-López D, Prieto MH, Ramírez-Santa-Pau M, Pérez-Rodriguez JM (2012) Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agricultural Water Management 112, 43-54.
| Crossref | Google Scholar |

Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist 164, 357-364.
| Crossref | Google Scholar | PubMed |

Noelia Cofré MN, Ferrari AE, Becerra A, Domínguez L, Wall LG, Urcelay C (2017) Effects of cropping systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use and Management 33(2), 364-378.
| Crossref | Google Scholar |

Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry 42(5), 724-738.
| Crossref | Google Scholar |

Oehl F, Silva GAd, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116(1), 75-120.
| Crossref | Google Scholar |

Omar MB, Bolland L, Heather WA (1979) A permanent mounting medium for fungi. Bulletin of the British Mycological Society 13, 31-32.
| Crossref | Google Scholar |

Ouledali S, Ennajeh M, Zrig A, Gianinazzi S, Khemira H (2018) Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiologia Plantarum 40(5), 81.
| Crossref | Google Scholar |

Ouledali S, Lumini E, Bianciotto V, Khemira H, Ennajeh M (2022) Diversity of arbuscular mycorrhizal fungi in olive orchard soils in arid regions of Southern Tunisia. Arid Land Research and Management 36(4), 411-427.
| Crossref | Google Scholar |

Palla M, Turrini A, Cristani C, Caruso G, Avio L, Giovannetti M, Agnolucci M (2020) Native mycorrhizal communities of olive tree roots as affected by protective green cover and soil tillage. Applied Soil Ecology 149, 103520.
| Crossref | Google Scholar |

Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55(403), 1743-1750.
| Crossref | Google Scholar | PubMed |

Rejsková A, Patková L, Stodůlková E, Lipavska H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. Journal of Plant Physiology 164(2), 174-184.
| Crossref | Google Scholar | PubMed |

Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7(8), 740-754.
| Crossref | Google Scholar |

Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil 238, 325-333.
| Crossref | Google Scholar |

Rosales MA, Maurel C, Nacry P (2019) Abscisic acid coordinates dose-dependent developmental and hydraulic responses of roots to water deficit. Plant Physiology 180(4), 2198-2211.
| Crossref | Google Scholar | PubMed |

Rosecrance RC, Krueger WH, Milliron L, Bloese J, Garcia C, Mori B (2015) Moderate regulated deficit irrigation can increase olive oil yields and decrease tree growth in super high density ‘Arbequina’ olive orchards. Scientia Horticulturae 190, 75-82.
| Crossref | Google Scholar |

Sagadin MB, Monteoliva M, Luna CM, Cabello MN (2018) Diversidad e infectividad de hongos micorrícicos arbusculares nativos provenientes de algarrobales del Parque Chaqueño argentino con características edafoclimáticas contrastantes. AgriScientia 35(2), 19-33.
| Crossref | Google Scholar |

Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U, van der Heijden MGA, Oehl F (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 84, 38-52.
| Crossref | Google Scholar |

Schellenbaum L, Müller J, Boller T, Wiemken A, Schüepp H (1998) Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytologist 138, 59-66.
| Crossref | Google Scholar |

Schüßler A, Walker C (2010) ‘The glomeromycota: a species list with new families and new gener.’ (CreateSpace Independent Publishing Platform)

Sieverding E (1991) Vesicular-arbuscular mycorrhiza management: in tropical agrosystems No. C045. 072. GTZ.

Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16, 144-158.
| Crossref | Google Scholar |

Smith SE, Read DJ (2008) ‘Mycorrhizal symbiosis.’ (Academic press)

Soteras F, Grilli G, Cofré MN, Marro N, Becerra A (2015) Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in central Argentina. Applied Soil Ecology 85, 30-37.
| Crossref | Google Scholar |

Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, et al. (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028-1046.
| Crossref | Google Scholar | PubMed |

Stutz JC, Morton JB (1996) Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Canadian Journal of Botany 74(12), 1883-1889.
| Crossref | Google Scholar |

Torres-Arias Y, Fors RO, Nobre C, Gómez EF, Berbara RLL (2017) Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions. Brazilian Journal of Microbiology 48, 87-94.
| Crossref | Google Scholar | PubMed |

Trejo D, Ferrera-Cerrato R, García R, Varela L, Lara L, Alarcón A (2011) Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Revista Chilena de Historia Natural 84(1), 23-31.
| Crossref | Google Scholar |

Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nature Climate Change 4, 17-22.
| Crossref | Google Scholar |

Trentacoste ER, Puertas CM, Sadras VO (2015) Effect of irrigation and tree density on vegetative growth, oil yield and water use efficiency in young olive orchard under arid conditions in Mendoza, Argentina. Irrigation Science 33(6), 429-440.
| Crossref | Google Scholar |

Trotel-Aziz P, Niogret MF, Larher F (2000) Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. Physiologia Plantarum 110, 376-383.
| Google Scholar |

Turrini A, Caruso G, Avio L, Gennai C, Palla M, Agnolucci M, Tomei PE, Giovannetti M, Gucci R (2017) Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Applied Soil Ecology 116, 70-78.
| Crossref | Google Scholar |

Uylaşer V, Yildiz G (2014) The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Critical Reviews in Food Science and Nutrition 54(8), 1092-1101.
| Crossref | Google Scholar | PubMed |

Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163, 417-425.
| Crossref | Google Scholar | PubMed |

Yin J, Bauerle TL (2017) A global analysis of plant recovery performance from water stress. Oikos 126(10), 1377-1388.
| Crossref | Google Scholar |