Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca2+ Hub’

Vadim Demidchik A B D and Sergey Shabala C
+ Author Affiliations
- Author Affiliations

A Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus.

B Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376 St Petersburg, Russia.

C School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.

D Corresponding author. Email: dzemidchyk@bsu.by

This paper originates from a presentation at the Fourth International Symposium on Plant Signaling and Behavior, Komarov Botanical Institute RAS/Russian Science Foundation, Saint Petersburg, Russia, 1923 June 2016.

Functional Plant Biology 45(2) 9-27 https://doi.org/10.1071/FP16420
Submitted: 30 November 2016  Accepted: 7 December 2016   Published: 20 February 2017

Abstract

Elevation in the cytosolic free calcium is crucial for plant growth, development and adaptation. Calcium influx into plant cells is mediated by Ca2+ depolarisation-activated, hyperpolarisation-activated and voltage-independent Ca2+-permeable channels (DACCs, HACCs and VICCs respectively). These channels are encoded by the following gene families: (1) cyclic nucleotide-gated channels (CNGCs), (2) ionotropic glutamate receptors (GLRs), (3) annexins, (4) ‘mechanosensitive channels of small (MscS) conductance’-like channels (MSLs), (5) ‘mid1-complementing activity’ channels (MCAs), Piezo channels, and hyperosmolality-induced [Ca2+]cyt. channel 1 (OSCA1). Also, a ‘tandem-pore channel1’ (TPC1) catalyses Ca2+ efflux from the vacuole in response to the plasma membrane-mediated Ca2+ elevation. Recent experimental data demonstrated that Arabidopsis thaliana (L.) Heynh. CNGCs 2, 5–10, 14, 16 and 18, GLRs 1.2, 3.3, 3.4, 3.6 and 3.7, TPC1, ANNEXIN1, MSL9 and MSL10,MCA1 and MCA2, OSCA1, and some their homologues counterparts in other species, are responsible for Ca2+ currents and/or cytosolic Ca2+ elevation. Extrusion of Ca2+ from the cytosol is mediated by Ca2+-ATPases and Ca2+/H+ exchangers which were recently examined at the level of high resolution crystal structure. Calcium-activated NADPH oxidases and reactive oxygen species (ROS)-activated Ca2+ conductances form a self-amplifying ‘ROS-Ca2+hub’, enhancing and transducing Ca2+ and redox signals. The ROS-Ca2+ hub contributes to physiological reactions controlled by ROS and Ca2+, demonstrating synergism and unity of Ca2+ and ROS signalling mechanisms.

Additional keywords: Ca2+-ATPase, calcium channels, calcium signalling, cyclic nucleotide gated channels, ionotropic glutamate receptors, mechanosensitive channels, oxidative stress, reactive oxygen species.


References

Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. The Plant Cell 19, 1081–1095.
Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyqu7c%3D&md5=9ecae8e61bfd68af287116316c2a8e7eCAS |

Aouini A, Matsukura C, Ezura H, Asamizu E (2012) Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles. Gene 493, 36–43.
Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFOi&md5=0760e0e29282efe8dab14c18ff716a59CAS |

Bànfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnàr GZ, Krause KH, Cox JA (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). Journal of Biological Chemistry 279, 18583–18591.
Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5).Crossref | GoogleScholarGoogle Scholar |

Baucher M, Pérez-Morga D, El Jaziri M (2012) Insight into plant annexin function: from shoot to root signaling. Plant Signaling & Behavior 7, 524–528.
Insight into plant annexin function: from shoot to root signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ls7vP&md5=b813657f38ab83887bcf3a1b65daa354CAS |

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229–1240.
ROS as key players in plant stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htLg%3D&md5=957fd55f5e66bcc91656cf9d3ecac129CAS |

Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296, 2026–2028.
RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1eqtLo%3D&md5=5199368c0d1cb99ca492c64e5b5cbf8fCAS |

Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT (2015) Towards a unified theory of calmodulin regulation (calmodulation) of voltage-gated calcium and sodium channels. Current Molecular Pharmacology 8, 188–205.
Towards a unified theory of calmodulin regulation (calmodulation) of voltage-gated calcium and sodium channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFyqsbrN&md5=aec7ed07e4fdc059f02590cc945ca502CAS |

Bonza MC, De Michelis MI (2011) The plant Ca2+-ATPase repertoire: biochemical features and physiological functions. Plant Biology 13, 421–430.
The plant Ca2+-ATPase repertoire: biochemical features and physiological functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFyns78%3D&md5=5cd4140c99181113380b16c4d9c5936fCAS |

Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Frontiers in Plant Science 2, 85
Calcium efflux systems in stress signaling and adaptation in plants.Crossref | GoogleScholarGoogle Scholar |

Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65, 1241–1257.
ROS homeostasis in halophytes in the context of salinity stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htbY%3D&md5=0e9bfe786dfba2f3a3bf74a46da82d1aCAS |

Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. Journal of Bioenergetics and Biomembranes 39, 409–414.
The origin and function of calmodulin regulated Ca2+ pumps in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotl2jtA%3D%3D&md5=b516928630cd1a1e3e1206692af5ab0aCAS |

Bradshaw HD (2005) Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytologist 167, 81–88.
Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtl2nsbk%3D&md5=85f3932931cee002333e1514259947f3CAS |

Campbell AK (2015) Intracellular calcium. Wiley & Sons, Ltd.

Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. Journal of Biological Chemistry 291, 20849–20857.
Why calcium? How calcium became the best communicator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1amurjE&md5=0d0a363959d5540000572056673dba62CAS |

Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology 1, a003947

Chiu J, Desalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Molecular Biology and Evolution 16, 826–838.
Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslGitbY%3D&md5=7ce7a819382a363d2cbdd06c23592175CAS |

Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S (2016) Rapid, long-distance electrical and calcium signaling in plants. Annual Review of Plant Biology 67, 287–307.
Rapid, long-distance electrical and calcium signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltFGrtrY%3D&md5=c95315b5f55d6c2fd78e1451152c06f2CAS |

Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytologist 199, 633–635.
Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSrurfJ&md5=37aa6483db022d36edaf3b05a46c3486CAS |

DeFalco TA, Marshall CB, Munro K, Kang HG, Moeder W, Ikura M, Snedden WA, Yoshioka K (2016) Multiple calmodulin-binding sites positively and negatively regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. The Plant Cell 28, 1738–1751.

del Rio LA (2015) ROS and RNS in plant physiology: an overview. Journal of Experimental Botany 66, 2827–2837.
ROS and RNS in plant physiology: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVeltbjE&md5=bc8618de8425dbb83805efbf83ec0a59CAS |

Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany 109, 212–228.
Mechanisms of oxidative stress in plants: from classical chemistry to cell biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaiur%2FM&md5=f8db8a141307c54edb23849b86ec517bCAS |

Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. Tansley Review. New Phytologist 175, 387–404.
Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. Tansley Review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSqs7w%3D&md5=523effe247b9d3f5e8663a91091fd2a4CAS |

Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiology 128, 379–387.
Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVSrur0%3D&md5=3244c141b9238ff188d0b58a71f6d78eCAS |

Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002a) Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth. The Plant Journal 32, 799–808.
Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWrsA%3D%3D&md5=4ab2077b31dbdd61420b9d8df72e761aCAS |

Demidchik V, Davenport RJ, Tester MA (2002b) Nonselective cation channels in plants. Annual Review of Plant Biology 53, 67–107.
Nonselective cation channels in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbw%3D&md5=9d111c9affbcc3c64c5b4f06c413ec9aCAS |

Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Science 116, 81–88.
Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2lsA%3D%3D&md5=eede4b7865478d7d00a7ac9b79d5f2d2CAS |

Demidchik V, Adobea P, Tester MA (2004) Glutamate activates sodium and calcium currents in the plasma membrane of Arabidopsis root cells. Planta 219, 167–175.
Glutamate activates sodium and calcium currents in the plasma membrane of Arabidopsis root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1eisb8%3D&md5=d3a03233117c7090b441fbccfbd1e6feCAS |

Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal 49, 377–386.
Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyisLk%3D&md5=7f81ca92215785e5d543de10ac001c1aCAS |

Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signaling by plasma membrane NADPH oxidase and Ca2+channels. The Plant Journal 58, 903–913.
Plant extracellular ATP signaling by plasma membrane NADPH oxidase and Ca2+channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVequrk%3D&md5=3e06af42c477866ea7bca58dbda061b7CAS |

Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science 123, 1468–1479.
Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1KmtL0%3D&md5=1ea5171aa64a36e614598240e5e6d344CAS |

Demidchik V, Shang Z, Shin R, Shabala S, Davies JM (2011) Receptor-like activity evoked by extracellular ADP in Arabidopsis thaliana root epidermal plasma membrane. Plant Physiology 156, 1375–1385.
Receptor-like activity evoked by extracellular ADP in Arabidopsis thaliana root epidermal plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWks7g%3D&md5=63b4f9215c220c8a15086e2e519a63e5CAS |

Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. The Plant Journal 85, 478–493.
Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFGhs7o%3D&md5=ddc01c0e8047b93292db402d4479de09CAS |

Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiology 124, 1511–1514.
Glutamate-gated calcium fluxes in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVWmuw%3D%3D&md5=15f0c76f727d2d4e0d9d098847cfffd6CAS |

Dietz KJ, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiology 171, 1535–1539.
Recent progress in understanding the role of reactive oxygen species in plant cell signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVGltrbL&md5=62a4029dc94cae6eff3327f5650e782dCAS |

Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annual Review of Plant Biology 61, 593–620.
The language of calcium signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsbs%3D&md5=1f77b23068825c905b1821b2b6a98eb7CAS |

Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Letters 569, 317–320.
Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1amu7g%3D&md5=72910740d38b73b1094d221a278c5ce8CAS |

Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences of the United States of America 110, 8744–8749.
Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSjtb%2FE&md5=673cb1b9d1b09b006d6c14dde1620ce6CAS |

Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. The Plant Journal 35, 800–810.
A role for glycine in the gating of plant NMDA-like receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Oqurc%3D&md5=9223c2e703c4cb33aaeaea8796fdeb0fCAS |

Emery L, Whelan S, Hirschi KD, Pittman JK (2012) Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants. Frontiers in Plant Science 3, 1
Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVejsLg%3D&md5=f9f6c2e4e54e2888238ca3c0dbe616b5CAS |

Fischer C, Kugler A, Hoth S, Dietrich P (2013) An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant & Cell Physiology 54, 573–584.
An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2msb4%3D&md5=b948e90c2213ed9a021d34d4de4d8d81CAS |

Fleet A, Ellis-Davies G, Bolsover S (1998) Calcium buffering capacity of neuronal cell cytosol measured by flash photolysis of calcium buffer NP-EGTA. Biochemical and Biophysical Research Communications 250, 786–790.
Calcium buffering capacity of neuronal cell cytosol measured by flash photolysis of calcium buffer NP-EGTA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsF2qtrw%3D&md5=78045ce46313ead42df7ff8638bf76f3CAS |

Fluhr R (2009) Reactive oxygen-generating NADPH oxidases in plants. In ‘Reactive oxygen species in plant signalling’. (Ed. LA Rio, A Puppo) pp. 1–23. (Springer-Verlag: Berlin)

Forde BG (2014) Glutamate signalling in roots. Journal of Experimental Botany 65, 779–787.
Glutamate signalling in roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOjtrY%3D&md5=27cea5c1181193510097b416b7b8be86CAS |

Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000Prime Reports 2, 37

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.
Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlGgtLg%3D&md5=dc90ce6dd130e8a7fd34100cf7f77cd1CAS |

Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant, Cell & Environment 39, 951–964.
Stress-triggered redox signalling: what’s in pROSpect?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvVaitLk%3D&md5=5860068ed4e7ec47c3d247071c4d547eCAS |

Furuichi T, Iida H, Sokabe M, Tatsumi H (2012) Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. Plant Signaling & Behavior 7, 1022–1026.
Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGgur8%3D&md5=80df4e4af721bdec57f52282a3beb84aCAS |

Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Zhou R, Li B (2012) A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses. The Plant Journal 70, 1056–1069.
A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1emu7%2FP&md5=ad8660e822cf6ea24671c0befbbdfcd8CAS |

Gao QF, Fei CF, Dong JY, Gu LL, Wang YF (2014) Arabidopsis CNGC18 is a Ca2+-permeable channel. Molecular Plant 7, 739–743.
Arabidopsis CNGC18 is a Ca2+-permeable channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Oiu7g%3D&md5=719b85ed53744c5427946c59afa0d627CAS |

Gao QF, Gu LL, Wang HQ, Fei CF, Fang X, Hussain J, Sun SJ, Dong JY, Liu H, Wang YF (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113, 3096–3101.
Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt12hsbo%3D&md5=f9e3d3d08fd94aa94561b4ef67365f7dCAS |

Geisler M, Axelsen KB, Harper JF, Palmgren MG (2000) Molecular aspects of higher plant P-type Ca2+-ATPases. Biochimica Biophysica Acta 1465, 52–78.
Molecular aspects of higher plant P-type Ca2+-ATPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wgtr8%3D&md5=65cab587e3271da170a5a95386e49f12CAS |

Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. Journal of Membrane Biology 155, 35–45.
Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFSrtQ%3D%3D&md5=b47d65c11976f3daccb815c3eea3eba6CAS |

Gémes K, Kim YJ, Park KY, Moschou PN, Andronis E, Valassaki C, Roussis A, Roubelakis-Angelakis KA (2016) An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity. Plant Physiology 172, 1418–1431.
An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity.Crossref | GoogleScholarGoogle Scholar |

Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. Journal of Experimental Botany 57, 791–800.
Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOqsbc%3D&md5=771d3cc4b430460be26c584440948c12CAS |

Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiologia Plantarum 134, 499–507.
The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnsbjJ&md5=712f0a0ee887c43c31f90aa91e046075CAS |

Guo KM, Babourina O, Christopher DA, Borsic T, Rengel Z (2010) The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiologia Plantarum 139, 303–312.

Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 196–201.
Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVOjsLbP&md5=7b1750aa72ab4dd3e06477ee01b5d1a0CAS |

Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology 141, 312–322.
Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksLg%3D&md5=fe2850f0c371af5d900aa6a40236ba9bCAS |

Hamilton DW, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proceedings of the National Academy of Sciences of the United States of America 97, 4967–4972.
Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFKisrc%3D&md5=988322f0bf835f78158b8be53d84692dCAS |

Hamilton ES, Schlegel AM, Haswell ES (2015) United in diversity: mechanosensitive ion channels in plants. Annual Review of Plant Biology 66, 113–137.
United in diversity: mechanosensitive ion channels in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVajtbvJ&md5=fd7c51c3a24383bfdea3333303879d6aCAS |

Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Current Biology 18, 730–734.
Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVaktrk%3D&md5=77db276e334c52d25b3a6f615b5d2ebdCAS |

Hedrich R (2012) Ion channels in plants. Physiological Reviews 92, 1777–1811.
Ion channels in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2lsbnF&md5=76478592f0e1f84cb75a00b3a2520fffCAS |

Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. The Plant Cell 11, 2113–2122.
Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsl2rsL4%3D&md5=aede81e1977b4e3c908ff6af9431186cCAS |

Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant and Soil 320, 103–115.
NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFGjtrc%3D&md5=57bc9b47a702dbe39ea01b11992be57fCAS |

Isayenkov S, Isner JC, Maathuis FJ (2010) Vacuolar ion channels: roles in plant nutrition and signalling. FEBS Letters 584, 1982–1988.
Vacuolar ion channels: roles in plant nutrition and signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVarurY%3D&md5=555fd7b4f5bc5f59510f8d0e3f89a4a9CAS |

Jagnandan D, Church JE, Banfi B, Stuehr DJ, Marrero MB, Fulton DJ (2007) Novel mechanism of activation of NADPH oxidase 5. Calcium sensitization via phosphorylation. Journal of Biological Chemistry 282, 6494–6507.
Novel mechanism of activation of NADPH oxidase 5. Calcium sensitization via phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVCisbw%3D&md5=618ebda65edf65be1478f292d8913338CAS |

Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM (2011) Calcium-permeable channels in plant cells. The FEBS Journal 278, 4262–4276.
Calcium-permeable channels in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaksrbM&md5=58193a77d217d74c58b1afc613cec821CAS |

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation 76, 25–40.
Salicylic acid in plant salinity stress signalling and tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCrsL8%3D&md5=bdf4aa53ea04a4f6d22cb147218228ceCAS |

Jha SK, Sharma M, Pandey GK (2016) Role of cyclic nucleotide gated channels in stress management in plants. Current Genomics 17, 315–329.
Role of cyclic nucleotide gated channels in stress management in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvVahtrc%3D&md5=85b3989a9b0f76529f00a78e38613d60CAS |

Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacological Reviews 63, 218–242.
NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslGis7o%3D&md5=c34d82a279fc9025fc33aef3341c12a8CAS |

Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54, 43–55.
Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Sqsbo%3D&md5=910b2b3637bb7eef7fbb636a0ab7d50eCAS |

Kadota Y, Shirasu K, Zipfel C (2015) Regulation of the NADPH oxidase RBOHD during plant immunity. Plant & Cell Physiology 56, 1472–1480.
Regulation of the NADPH oxidase RBOHD during plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12hs7jK&md5=34b8a2a6caa347b1c029f2baadf92db8CAS |

Kamano S, Kume S, Iida K, Lei KJ, Nakano M, Nakayama Y, Iida H (2015) Transmembrane topologies of Ca2+-permeable mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana. Journal of Biological Chemistry 290, 30901–30909.
Transmembrane topologies of Ca2+-permeable mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2is7nP&md5=709d02240efd8921fe8ae0195a71c589CAS |

Kamrul Huda KM, Yadav S, Akhter Banu MS, Trivedi DK, Tuteja N (2013a) Genome-wide analysis of plant-type II Ca2+-ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses. Plant Physiology and Biochemistry 65, 32–47.
Genome-wide analysis of plant-type II Ca2+-ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFCmtrc%3D&md5=94128ef9eaa47ddf4c7b790a994b33b8CAS |

Kamrul Huda KM, Akhter Banu MS, Garg B, Tula S, Tuteja R, Tuteja N (2013b) OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. The Plant Journal 76, 997–1015.
OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.Crossref | GoogleScholarGoogle Scholar |

Kavdia M (2006) A computational model for free radicals transport in the microcirculation. Antioxidants & Redox Signalling 8, 1103–1111.
A computational model for free radicals transport in the microcirculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFCisbo%3D&md5=48eab43f9e2b4b86968c6a010a6bec7bCAS |

Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evolutionary Biology 7, 109
Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes.Crossref | GoogleScholarGoogle Scholar |

Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction. Plant & Cell Physiology 39, 721–730.
Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGisbc%3D&md5=f86582213190d4d6a8f4c0737d838f89CAS |

Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. The Plant Cell 26, 1069–1080.
Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotV2kt7c%3D&md5=a04ba2dce7566bf441673656f8fa5ed3CAS |

Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell 10, 255–266.

Kintzer AF, Stroud RM (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 258–264.
Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVChuro%3D&md5=af019df1033380c38f91dfb587344859CAS |

Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell 19, 1065–1080.
Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyqu7Y%3D&md5=8dadbb33530fa8a770dabd26eab1bf49CAS |

Köhler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. The Plant Journal 32, 185–194.
Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid.Crossref | GoogleScholarGoogle Scholar |

Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. The Plant Journal 18, 97–104.
Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Kolupaev IE, Vaĭner AA, Iastreb TO, Oboznyĭ AI, Khripach VA (2014) The role of reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells. Prikladnaia Biokhimiia i Mikrobiologiia 50, 593–598.
The role of reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells.Crossref | GoogleScholarGoogle Scholar |

Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiology 150, 1394–1410.
The role of annexin 1 in drought stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFerur4%3D&md5=a808b6846bf334ea0403a11e2b619435CAS |

Koppenol WH (2001) The Haber-Weiss cycle – 70 years later. Redox Report 6, 229–234.
The Haber-Weiss cycle – 70 years later.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVWitbg%3D&md5=5628aa50a8d4750e25b5fb36a5afb2a8CAS |

Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M, Hamada H, Yamanaka T, Iida K, Nakagawa Y, Saji H, Shinozaki K, Iida H, Kuchitsu K (2012) Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biology 12, 11
Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ejsrs%3D&md5=7d2e73805ad549e98d7a6371bee5b023CAS |

Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science 6, 427
Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Lam H-M, Chiu J, Hsieh M-H, Meisel L, Oliviera IC, Shin M, Coruzzi G (1998) Glutamate receptor genes in plants. Nature 396, 125–126.
Glutamate receptor genes in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslantLY%3D&md5=1095c5ed94056c243d43ab6926408f81CAS |

Lambeth JD, Neish AS (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annual Review of Pathology 9, 119–145.
Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1emsbo%3D&md5=4081a6612139f454e90eef3bf94a7c11CAS |

Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882–897.
Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVejs74%3D&md5=459ae49d468578b686c83ea7fe2b097aCAS |

Laohavisit A, Mortimer JC, Demidchik V, Coxon KM, Stancombe MA, Macpherson N, Brownlee C, Hofmann A, Webb AA, Miedema H, Battey NH, Davies JM (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. The Plant Cell 21, 479–493.
Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKrtro%3D&md5=e949ba7b950a92ac2ff9c378c1cde550CAS |

Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM (2013) Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiology 163, 253–262.
Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVygsbjL&md5=1ba917dd2b978c98cdb7f6922c5301b1CAS |

Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Current Biology 6, 427–437.
Calcium-mediated apoptosis in a plant hypersensitive disease resistance response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xislagur0%3D&md5=4adcc26e76e9f0e42f53a03b92ba1f9cCAS |

Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J (2016) Ca2+-and diurnal rhythm-regulated Na+/Ca2+ exchanger AtNCL affects flowering time and auxin signaling in Arabidopsis. Plant, Cell & Environment 39, 377–392.
Ca2+-and diurnal rhythm-regulated Na+/Ca2+ exchanger AtNCL affects flowering time and auxin signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVyitro%3D&md5=00c6332a735a88600069b14d0ff37ebbCAS |

Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39, 951–960.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFait7Y%3D&md5=46f1c4074e289d649d907b845ff93c87CAS |

Linse S, Helmersson A, Forsén S (1991) Calcium binding to calmodulin and its globular domains. Journal of Biological Chemistry 266, 8050–8054.

Lizarbe MA, Barrasa JI, Olmo N, Gavilanes F, Turnay J (2013) Annexin-phospholipid interactions. Functional implications. International Journal of Molecular Sciences 14, 2652–2683.
Annexin-phospholipid interactions. Functional implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlGqu7c%3D&md5=7a12bfcc6348dbaaf7546206a4fe4bf8CAS |

Lohaus G, Winter H, Riens B, Heldt H-W (1995) Further studies of the phloem loading process in leaves of barley and spinach – the comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Botanica Acta 108, 270–275.
Further studies of the phloem loading process in leaves of barley and spinach – the comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFSis7k%3D&md5=43f3b8a957d93a80782cad7371b615ffCAS |

Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Muehling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiologia Plantarum 111, 457–465.
Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVait7g%3D&md5=cbe2f3345854e8c27fb9e931886f7931CAS |

Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. Journal of Biological Chemistry 289, 10261–10268.
The plasma membrane calcium pump: new ways to look at an old enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlCktLo%3D&md5=fb53aace164bc5b86f325ae65f18ce1cCAS |

Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q (2016) AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. Journal of Experimental Botany 67, 809–819.
AtCNGC2 is involved in jasmonic acid-induced calcium mobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlWiu7zI&md5=84b81258ba45b5baa760373c709fc368CAS |

Lunevsky V, Aleksandrov A, Berestovsky G, Volkova S, Vostrikov I, Zherelova O (1977) Ionic mechanism of excitation of plasmalemma and tonoplast of characean algal cells. In ‘Transmembrane ionic exchanges in plants’. (Eds M Thellier, A Monnier, M Demarty, J Dainty) pp. 167–172. (CNRS: Paris)

Maathuis FJM, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Frontiers in Plant Science 5, 467
Regulation of Na+ fluxes in plants.Crossref | GoogleScholarGoogle Scholar |

Manohar M, Shigaki T, Hirschi KD (2011) Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations. Plant Biology 13, 561–569.
Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Ogu74%3D&md5=6034237ce8700ae32b28fd0242d333caCAS |

Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B, Garcia-Brugger A (2013) Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. The Plant Journal 76, 466–480.
Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WntLfJ&md5=38f112cfb3136a37130298be6e31fd9fCAS |

Martins TV, Evans MJ, Woolfenden HC, Morris RJ (2013) Towards the physics of calcium signalling in plants. Plants 2, 541–588.
Towards the physics of calcium signalling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVClt70%3D&md5=d35de21176a36771484bc941e2bcb835CAS |

Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2011) Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. Plant Science 180, 655–660.
Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFyhsL0%3D&md5=41b8e6746c11a143f2f0d8f819ee6871CAS |

Medvedev SS (2005) Calcium signaling system in plants. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 52, 249–270.
Calcium signaling system in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFeiurk%3D&md5=a5beb046433c72a745c9564be1e5d0cbCAS |

Mei H, Cheng NH, Zhao J, Park P, Escareno RA, Pittman JK, Hirschi KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytologist 183, 95–105.
Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFCku7g%3D&md5=ad5658bdcf0d75e57e0cb28a82d7041cCAS |

Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332, 434–437.
Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVals74%3D&md5=858adff9bdf12c9c051016921e0935e5CAS |

Miedema H, Demidchik V, Véry AA, Bothwell JHF, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytologist 179, 378–385.
Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOgt7Y%3D&md5=537187e165151077e02bc31b298842ddCAS |

Moeder W, Urquhart W, Ung H, Yoshioka K (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Molecular Plant 4, 442–452.
The role of cyclic nucleotide-gated ion channels in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyjtb4%3D&md5=e4224e4b52068642d3feb3bcc2ddcdfaCAS |

Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiology 135, 702–708.
Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlKjur8%3D&md5=544aec71b5bf128f7e1f2ec36ece1521CAS |

Mori MX, Vander Kooi CW, Leahy DJ, Yue DT (2008) Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure (London, England) 16, 607–620.
Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlGgtr0%3D&md5=90164e3a9cce5a34fe463fc9594ab7deCAS |

Nguyen HT, Umemura K, Kawano T (2016) Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture. Bioscience, Biotechnology, and Biochemistry 80, 1546–1554.
Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xntlyks70%3D&md5=4029629dc18bf2e4e3ea7c3d0b6106cdCAS |

Ni J, Yu Z, Du G, Zhang Y, Taylor JL, Shen C, Xu J, Liu X, Wang Y, Wu Y (2016) Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots. Rice 9, 9
Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots.Crossref | GoogleScholarGoogle Scholar |

Niggli V, Carafoli E (2016) The plasma membrane Ca2+ ATPase: purification by calmodulin affinity chromatography, and reconstitution of the purified protein. Methods in Molecular Biology 1377, 57–70.
The plasma membrane Ca2+ ATPase: purification by calmodulin affinity chromatography, and reconstitution of the purified protein.Crossref | GoogleScholarGoogle Scholar |

Nishizawa T, Kita S, Maturana AD, Furuya N, Hirata K, Kasuya G, Ogasawara S, Dohmae N, Iwamoto T, Ishitani R, Nureki O (2013) Structural basis for the counter‐transport mechanism of a H+/Ca2+ exchanger. Science 341, 168–172.
Structural basis for the counter‐transport mechanism of a H+/Ca2+ exchanger.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOku7zP&md5=d3ea79ea78787c780aa32e5d68335984CAS |

Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signalling. Journal of Experimental Botany 64, 2629–2639.
Evidence of oxidative attenuation of auxin signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlerur8%3D&md5=af170eec89b47d69d63b8ced5db2dcb5CAS |

Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734.
Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1CgtLY%3D&md5=8a1f28a429b88cedb236d3ff0d553a4cCAS |

Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant, Cell & Environment 37, 1672–1687.
Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots.Crossref | GoogleScholarGoogle Scholar |

Pittman JK, Hirschi KD (2016) CAX-ing a wide net: cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biology 18, 741–749.
CAX-ing a wide net: cation/H+ transporters in metal remediation and abiotic stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1yhtL3J&md5=9806de771543dd9607cf7147b46ab64bCAS |

Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytologist 174, 742–751.
Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth.Crossref | GoogleScholarGoogle Scholar |

Pottosin I, Shabala S (2016) Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Molecular Plant 9, 356–370.
Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvVGqsrg%3D&md5=8be91494773771ac75ef4fa751a0ad70CAS |

Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. Journal of Experimental Botany 65, 1271–1283.
Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htbw%3D&md5=72037fa2f76425658d7df07c605767c3CAS |

Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. The Plant Cell 6, 1301–1310.
Oxidative signals in tobacco increase cytosolic calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFOhs74%3D&md5=6e5a8a3caca2dc358804f2fbaff642daCAS |

Price MB, Kong D, Okumoto S (2013) Inter-subunit interactions between glutamate-like receptors in Arabidopsis. Plant Signaling & Behavior 8, e27034
Inter-subunit interactions between glutamate-like receptors in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiology 142, 963–971.
Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurbK&md5=ef35539c0692b397dc4c887f3dfc4837CAS |

Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, He M, Cui M, Shang Z, Wang D, Zhu Z (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. Journal of Experimental Botany 66, 5853–5866.
A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGju7zE&md5=6b60908a1ed152db57d1f03820c0d289CAS |

Qu HY, Shang ZL, Zhang SL, Liu LM, Wu JY (2007) Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytologist 174, 524–536.
Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOktLg%3D&md5=d205292d73f3eab2ae7d22738ebc4b77CAS |

Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science 7, 327
Calcium sensors as key hubs in plant responses to biotic and abiotic stresses.Crossref | GoogleScholarGoogle Scholar |

Rounds CM, Bezanilla M (2013) Growth mechanisms in tip-growing plant cells. Annual Review of Plant Biology 64, 243–265.
Growth mechanisms in tip-growing plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFSktL8%3D&md5=6be556243ece80087155106f123b0f15CAS |

Roy SJ, Gilliham M, Berger B, Essah PA, Cheffings C, Miller AJ, Davenport RJ, Liu LH, Skynner MJ, Davies JM, Richardson P, Leigh RA, Tester M (2008) Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant, Cell & Environment 31, 861–871.
Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOmurk%3D&md5=ce7a4d003fa8b665abe8e8d3ef42989bCAS |

Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Frontiers in Plant Science 7, 187
Global plant stress signaling: reactive oxygen species at the cross-road.Crossref | GoogleScholarGoogle Scholar |

Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology 141, 1653–1665.
Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKitbo%3D&md5=1583ba00794bbed3e82f390e3c0d4f41CAS |

Shabala S, Bækgaard L, Shabala L, Fuglsang AT, Cuin TA, Nemchinov LG, Palmgren MG (2011) Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling & Behavior 6, 1053–1056.
Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSlsb8%3D&md5=49f1e584c0a5c3ddde40bffadeca04ffCAS |

Shabala S, Wu HH, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Science 241, 109–119.
Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGmtr3K&md5=98324bba39c61d180c255e99e4ef7850CAS |

Shabala S, Bose J, Fuglsang AT, Pottosin I (2016a) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany 67, 1015–1031.
On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlWiu77K&md5=fa501ce201a8ddd51ffb358444b3926fCAS |

Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U (2016b) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Functional Plant Biology 43, 87–104.
Root-to-shoot signalling: integration of diverse molecules, pathways and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1Wiuw%3D%3D&md5=e185b6dbdb232aa8e83a5b286e0f86efCAS |

Shang ZL, Ma LG, Zhang HL, He RR, Wang XC, Cui SJ, Sun DY (2005) Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant & Cell Physiology 46, 598–608.
Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslGrtLs%3D&md5=5a28cfeb48d0445404daa3703ba12ea6CAS |

Shih HW, DePew CL, Miller ND, Monshausen GB (2015) The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Current Biology 25, 3119–3125.
The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOqsbvK&md5=8f72fa77381bd6f810be5440ba4f70e2CAS |

Shukla D, Huda KM, Banu MS, Gill SS, Tuteja R, Tuteja N (2014) OsACA6, a P-type 2B Ca2+ ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Planta 240, 809–824.
OsACA6, a P-type 2B Ca2+ ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GnurbJ&md5=6fa6c8003fabc4587fbc3050f435c8ddCAS |

Singh SK, Chien CT, Chang IF (2016) The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4. Journal of Experimental Botany 67, 1853–1869.
The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtlant7fI&md5=81158492509784f7937bad4039a12df4CAS |

Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify physiology of Arabidopsis thaliana plants. The Plant Journal 85, 245–257.
Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify physiology of Arabidopsis thaliana plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSqtb4%3D&md5=5b5c9ec8f9547f2f6bc287d8a82050bfCAS |

Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 100, 1456–1461.
Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtF2ns74%3D&md5=f1d4f51e9b09e69175bf90290e3ff342CAS |

Straltsova D, Chykun P, Subramaniam S, Sosan A, Kolbanov D, Sokolik A, Demidchik V (2015) Cation channels are involved in brassinosteroid signalling in higher plants. Steroids 97, 98–106.
Cation channels are involved in brassinosteroid signalling in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCqsrnM&md5=eb2a223fe42c90492940ca52cf91e707CAS |

Subbaiah CC, Bush DS, Sachs MM (1994) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. The Plant Cell 6, 1747–1762.
Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVWkt7k%3D&md5=71e0537c0ba8875fb1bd9f6346d397dfCAS |

Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. The FEBS Journal 275, 3249–3277.
Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1OgtLc%3D&md5=d060fee3c7ab818a1ccc2a6b46acdf43CAS |

Swarbreck SM, Colaço R, Davies JM (2013) Plant calcium-permeable channels. Plant Physiology 163, 514–522.
Plant calcium-permeable channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ojs7bM&md5=d3a617374c3b00f24f576ba42ad87fa7CAS |

Świeżawska B, Marciniak K, Szmidt-Jaworska A (2015) Biosynthesis of cyclic GMP in plant cells - new insight into guanylate cyclases. Postepy Biochemii 61, 168–175.

Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annual Review of Plant Physiology and Plant Molecular Biology 51, 433–462.
Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7o%3D&md5=022a415e09bd70c4d75c896c26b8e41aCAS |

Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Letters 393, 13–18.
Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFWktLg%3D&md5=1f10a7f7fa5f11f93c421ba58e604951CAS |

Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. The Plant Journal 13, 603–610.
Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVKgtLo%3D&md5=f2d86c98fb5cee36c1b4da3d7955f256CAS |

Thuleau P, Ward JM, Ranjeva R, Schroeder JI (1994) Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO Journal 13, 2970–2975.

Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL, Wiuf C, Palmgren MG, Nissen P (2012) A bimodular mechanism of calcium control in eukaryotes. Nature 491, 468–472.
A bimodular mechanism of calcium control in eukaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCnsbfP&md5=d35b47a476dfd45be0f564898da2e5deCAS |

Tirone F, Radu L, Craescu CT, Cox JA (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49, 761–771.
Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOmtg%3D%3D&md5=a067d4f79485f27ff03d5434673f8239CAS |

Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology 8, 397–403.
Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFGgtrg%3D&md5=5bf1b968b86863965f1105f01ae15485CAS |

Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues, AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America 99, 517–522.
Arabidopsis gp91phox homologues, AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1CqsQ%3D%3D&md5=5545cea71aa67200441465478a319a29CAS |

Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant, Cell & Environment 31, 1063–1073.
NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSgt73E&md5=e051b8c9382f74b978071a33214d1735CAS |

Véry AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proceedings of the National Academy of Sciences of the United States of America 97, 9801–9806.
Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs.Crossref | GoogleScholarGoogle Scholar |

Vincill ED, Bieck AM, Spalding EP (2012) Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiology 159, 40–46.
Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2hu7s%3D&md5=c1b4e13dc4e6b184727bcdaaa59e8de2CAS |

Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Frontiers in Plant Science 6, 809
Abiotic stress responses in plants: roles of calmodulin-regulated proteins.Crossref | GoogleScholarGoogle Scholar |

Visscher AM, Paul AL, Kirst M, Guy CL, Schuerger AC, Ferl RJ (2010) Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate. PLoS One 5, e12348
Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.Crossref | GoogleScholarGoogle Scholar |

Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiology 136, 3892–3904.
Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVamtw%3D%3D&md5=437593891f9a96db739bce7938d6fca3CAS |

Wang P, Li Z, Wei J, Zhao Z, Sun D, Cui S (2012) A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis. Journal of Biological Chemistry 287, 44062–44070.
A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslSh&md5=e9b8d3b9919241e36a2eefce21fea64eCAS |

Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI (2013) Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiology 163, 578–590.
Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ojs7fO&md5=1a63f06abc156acf146d0c13594a6395CAS |

Wang X, Ma X, Wang H, Li B, Clark G, Guo Y, Roux S, Sun D, Tang W (2015) Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Molecular & Cellular Proteomics 14, 686–694.
Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjslCmtr8%3D&md5=09626541a5163a350e6e4ec58117cdd5CAS |
      Wang F, Chen ZH, Liu X, Colmer TD, Zhou M, Shabala S (2016a) Tissue-specific root ion profiling reveals essential roles for the CAX and ACA calcium transport systems for hypoxia response in Arabidopsis. Journal of Experimental Botany 67, 3747–3762.
Tissue-specific root ion profiling reveals essential roles for the CAX and ACA calcium transport systems for hypoxia response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Wang F, Chen ZH, Liu X, Colmer TD, Shabala L, Salih A, Zhou M, Shabala S (2016b) Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. Journal of Experimental Botany

Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH, Roe‐Zurz Z, Risenmay AJ, Sali A, Stroud RM (2013) Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499, 107–110.
Structural basis for alternating access of a eukaryotic calcium/proton exchanger.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFSmtr0%3D&md5=edd6dbc123ef17ba8d3a0fa9392b240eCAS |

Weiland M, Mancuso S, Baluska F (2015) Signalling via glutamate and GLRs in Arabidopsis thaliana. Functional Plant Biology 43, 1–25.

White PJ, Davenport RJ (2002) The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiology 130, 1386–1395.
The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVOmsL8%3D&md5=c3cf3acbc92e66cb9ea7b893fa054beeCAS |

White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochimica et Biophysica Acta. Biomembranes 1564, 299–309.
Genes for calcium-permeable channels in the plasma membrane of plant root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlCktbc%3D&md5=1907e12a33e650794b5557f390d7ada7CAS |

Wilkins KA, Matthus E, Swarbreck SM, Davies JM (2016) Calcium-mediated abiotic stress signaling in roots. Frontiers in Plant Science 7, 1296
Calcium-mediated abiotic stress signaling in roots.Crossref | GoogleScholarGoogle Scholar |

Wu M, Tong S, Waltersperger S, Diederichs K, Wang M, Zheng L (2013) Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proceedings of the National Academy of Sciences of the United States of America 110, 11367–11372.
Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GlsrfK&md5=7474071cf219e1cc44263e4686626f44CAS |

Xing T, Wang XJ, Malik K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Molecular Plant-Microbe Interactions 14, 1261–1264.
Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVeltbs%3D&md5=92aed1f7019e185928492f78ca8c1c09CAS |

Xu L, Tang Y, Gao S, Su S, Hong L, Wang W, Fang Z, Li X, Ma J, Quan W, Sun H, Li X, Wang Y, Liao X, Gao J, Zhang F, Li L, Zhao C (2016) Comprehensive analyses of the annexin gene family in wheat. BMC Genomics 17, 415
Comprehensive analyses of the annexin gene family in wheat.Crossref | GoogleScholarGoogle Scholar |

Yadav AK, Shankar A, Jha SK, Kanwar P, Pandey A, Pandey GK (2015) A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast. Scientific Reports 5, 17117
A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGju7bJ&md5=7800efd03ec17010b4d989be8bbe0507CAS |

Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei ZM (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371.
OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKmtbbM&md5=35f20f4542f8d24c53adcf71b962c5bdCAS |

Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. Journal of Experimental Botany 62, 2371–2379.
Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Clt7g%3D&md5=aa95ef7f7ebe90fa09248e9d1b25f28fCAS |

Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227, 659–669.
The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVyjsg%3D%3D&md5=cd4c125790e4b669d136139a06299d77CAS |

Zhou L, Lan W, Jiang Y, Fang W, Luan S (2014) A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Molecular Plant 7, 369–376.
A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlamsbc%3D&md5=bd3bda3306907029a01a634dd9c2a5e8CAS |

Zhu C, Yang N, Guo Z, Qian M, Gan L (2016) An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings. Plant Physiology and Biochemistry 105, 37–44.
An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvVamsbs%3D&md5=9f2dd793a1b8e2e17d359b59444687ddCAS |