Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Ozone damage, detoxification and the role of isoprenoids – new impetus for integrated models

Supriya Tiwari A E , Rüdiger Grote B D E , Galina Churkina C and Tim Butler C
+ Author Affiliations
- Author Affiliations

A Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India.

B Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany.

C Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany.

D Corresponding author. Email: ruediger.grote@kit.edu

E These authors contributed equally to the manuscript.

Functional Plant Biology 43(4) 324-336 https://doi.org/10.1071/FP15302
Submitted: 23 September 2015  Accepted: 22 December 2015   Published: 16 February 2016

Abstract

High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.

Additional keywords: biogenic volatile organic compounds, impact modelling, oxidative damage, physiological defence, reactive oxygen species.


References

Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology 63, 637–661.
The effects of tropospheric ozone on net primary productivity and implications for climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1amtrc%3D&md5=f0eaed57eecd68cf5f47ae0c87781279CAS | 22404461PubMed |

Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment 28, 949–964.
Assessing the future global impacts of ozone on vegetation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslShu7Y%3D&md5=44dd4d191ae8d02538c29f7aab07c155CAS |

Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment 45, 2284–2296.
Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbw%3D&md5=f6badc1707bc8af3b0c087394ebfb1a5CAS |

Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In ‘Progress in photosynthesis research’. (Ed. J Biggins) pp. 221–224. (Martinus-Nijhoff Publishers: Dordrecht, The Netherlands)

Behnke K, Kleist E, Uerlings R, Wildt J, Rennenberg H, Schnitzler J-P (2009) RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance. Tree Physiology 29, 725–736.
RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVWisrw%3D&md5=1cba53ab3089eccaa969560266005a96CAS | 19324699PubMed |

Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. Journal of Plant Physiology 176, 192–201.
Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1OitLY%3D&md5=4e491a1fd677b330a10df6f1665cc4d8CAS | 25638402PubMed |

Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant, Cell & Environment 29, 2077–2090.
Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gsrnL&md5=abcb85f7fb6fd9240d357e20f6039117CAS |

Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, Ainsworth EA (2012) Ozone exposure response for US soybean cultivars: Linear reductions in photosynthetic potential, biomass, and yield. Plant Physiology 160, 1827–1839.
Ozone exposure response for US soybean cultivars: Linear reductions in photosynthetic potential, biomass, and yield.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmt7vK&md5=97158c38cd8ab87d24fec7da2f7e8116CAS | 23037504PubMed |

Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Journal of Biological Chemistry 282, 1183–1192.
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Kluw%3D%3D&md5=15841574fd8735e8e3cecce4674bf84aCAS | 17105724PubMed |

Bourtsoukidis E, Bonn B, Dittmann A, Hakola H, Hellen H, Jacobi S (2012) Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterisation. Biogeosciences 9, 4337–4352.
Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVOjsLY%3D&md5=2534a68bfd57eb01f57d5ee5f5370718CAS |

Brunetti C, Ferrini F, Fini A, Tattini M (2014) New evidence for the functional roles of volatile and non-volatile isoprenoids in stressed plants. Agrochimica 58, 61–76.

Bryan AM, Steiner AL (2013) Canopy controls on the forest-atmosphere exchange of biogenic ozone and aerosol precursors. Michigan Journal of Sustainability 1, 31–49.
Canopy controls on the forest-atmosphere exchange of biogenic ozone and aerosol precursors.Crossref | GoogleScholarGoogle Scholar |

Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytologist 179, 55–61.
Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFWhsbs%3D&md5=1efafa338e82a0ec99810b2deeaa4af0CAS | 18557875PubMed |

Calfapietra C, Fares S, Loreto F (2009) Volatile organic compounds from Italian vegetation and their interaction with ozone. Environmental Pollution 157, 1478–1486.
Volatile organic compounds from Italian vegetation and their interaction with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2lu7o%3D&md5=585e8838df23994073883575880d7e96CAS | 19019511PubMed |

Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In ‘Biology, controls and models of tree volatile organic compound emissions. Vol. 5.’ (Eds Ü Niinemets, RK Monson) pp. 253–284. (Springer: Dordrecht, The Netherlands)

Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment. Environmental Pollution 157, 1461–1469.
Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2lu7w%3D&md5=04e04686e3f4298e7b8433a9c06bb629CAS | 18954925PubMed |

Chameides WL, Kasibhatla PS, Yienger J, Levy IIH (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264, 74–77.
Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFWqsrg%3D&md5=10363be1f75789dbd1ae0b612979f0a6CAS | 17778137PubMed |

Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2, 53
Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants.Crossref | GoogleScholarGoogle Scholar |

de Andrés JM, Borge R, de la Paz D, Lumbreras J, Rodríguez E (2012) Implementation of a module for risk of ozone impacts assessment to vegetation in the integrated assessment modelling system for the Iberian Peninsula. Evaluation for wheat and Holm oak. Environmental Pollution 165, 25–37.
Implementation of a module for risk of ozone impacts assessment to vegetation in the integrated assessment modelling system for the Iberian Peninsula. Evaluation for wheat and Holm oak.Crossref | GoogleScholarGoogle Scholar | 22398018PubMed |

De Temmerman L, Vandermeiren K, D’Haese D, Bortier K, Asard H, Ceulemans R (2002a) Ozone effects on trees, where uptake and detoxification meet. Dendrobiology 47, 9–19.

De Temmerman L, Wolf J, Colls J, Bindi M, Fangmeier A, Finnan J, Ojanperä K, Pleijel H (2002b) Effect of climatic conditions on tuber yield (Solanum tuberosum L.) in the European ‘CHIP’ experiments. European Journal of Agronomy 17, 243–255.
Effect of climatic conditions on tuber yield (Solanum tuberosum L.) in the European ‘CHIP’ experiments.Crossref | GoogleScholarGoogle Scholar |

Deckmyn G, Op de Beeck M, Löw M, Then C, Verbeeck H, Wipfler P, Ceulemans R (2007) Modelling ozone effects on adult beech trees through simulation of defence, damage, and repair costs: Implementation of the CASIROZ ozone model in the ANAFORE forest model. Plant Biology 9, 320–330.
Modelling ozone effects on adult beech trees through simulation of defence, damage, and repair costs: Implementation of the CASIROZ ozone model in the ANAFORE forest model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Ggsbo%3D&md5=0a5bc30da04ec3ad0a8a0de87fb3c1b2CAS | 17357024PubMed |

Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chemical Biology 7, 504–511.
Chemistry and biology of reactive oxygen species in signaling or stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyhsL4%3D&md5=5bb0c6a5bafa9b623ae467b7554ca061CAS | 21769097PubMed |

Dizengremel P, Vaultier M-N, Le Thiec D, Cabané M, Bagard M, Gérant D, Gérard J, Dghim AA, Richet N, Afif D, Pireaux J-C, Hasenfratz-Sauder M-P, Jolivet Y (2012) Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress. New Phytologist 195, 512–517.
Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVeis7w%3D&md5=5f006a4147924aec6e93087ff9d757dcCAS | 22686461PubMed |

Dumont J, Spicher F, Montpied P, Dizengremel P, Jolivet Y, Le Thiec D (2013) Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes. Environmental Pollution 173, 85–96.
Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVekurrP&md5=b24002a603a6a6b3a1a360cab7aa2adeCAS | 23202637PubMed |

Dumont J, Keski-Saari S, Keinänen M, Cohen D, Ningre N, Kontunen-Soppela S, Baldet P, Gibon Y, Dizengremel P, Vaultier M-N, Jolivet Y, Oksanen E, Le Thiec D (2014) Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes. Tree Physiology 34, 253–266.
Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltl2isrs%3D&md5=18920bfd3750582816dbdbaac26eafe6CAS | 24682617PubMed |

Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen J-P (2000) Modelling stomatal ozone flux across Europe. Environmental Pollution 109, 403–413.
Modelling stomatal ozone flux across Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt12ru7s%3D&md5=fd7f13b2ad6e6fa0100a65115f291442CAS | 15092873PubMed |

Ewert F, Porter JR (2000) Ozone effects on wheat in relation to CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration. Global Change Biology 6, 735–750.
Ozone effects on wheat in relation to CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration.Crossref | GoogleScholarGoogle Scholar |

Fares S, Loreto F, Kleist E, Wildt J (2008) Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biology 10, 44–54.
Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWru7s%3D&md5=f8b4c1225fb78c1fdb8b429373c268e5CAS | 17538866PubMed |

Fares S, Goldstein A, Loreto F (2010) Determinants of ozone fluxes and metrics for ozone risk assessment in plants. Journal of Experimental Botany 61, 629–633.
Determinants of ozone fluxes and metrics for ozone risk assessment in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSrtb8%3D&md5=2059521eac7fad2119d0744ba666d71cCAS | 19923198PubMed |

Feng Z, Hu E, Wang X, Jiang L, Liu X (2015) Ground-level O3 pollution and its impacts on food crops in China: a review. Environmental Pollution 199, 42–48.
Ground-level O3 pollution and its impacts on food crops in China: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWjt7s%3D&md5=227ab7e97d8ec7a26459647c89228bf0CAS | 25618365PubMed |

Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155, 2–18.
Ascorbate and glutathione: the heart of the redox hub.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFags7g%3D&md5=bb04712a85c22a82268cb2b6808dca2bCAS | 21205630PubMed |

Goumenaki E, Taybi T, Borland A, Barnes J (2010) Mechanisms underlying the impacts of ozone on photosynthetic performance. Environmental and Experimental Botany 69, 259–266.
Mechanisms underlying the impacts of ozone on photosynthetic performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWlsrs%3D&md5=cf3bde237403b6f166ef78c824afdad8CAS |

Grote R, Morfopoulos C, Niinemets Ü, Sun Z, Keenan TF, Pacifico F, Butler T (2014) A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. Plant, Cell & Environment 37, 1965–1980.
A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOlsLjK&md5=783cf3ce84943716b84456a92a5f6ecbCAS |

Gustafson EJ (2013) When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecology 28, 1429–1437.
When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world.Crossref | GoogleScholarGoogle Scholar |

Hartikainen K, Nerg AM, Kivimäenpää M, Kontunen-soppela S, Mäenpää M, Oksanen E, Rousi M, Holopainen T (2009) Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiology 29, 1163–1173.
Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrs7bI&md5=1d1d6116a9116584506519be3f691db4CAS | 19448266PubMed |

Harvey CM, Li Z, Tjellström H, Blanchard GJ, Sharkey TD (2015) Concentration of isoprene in artificial and thylakoid membranes. Journal of Bioenergetics and Biomembranes 47, 419–429.
Concentration of isoprene in artificial and thylakoid membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVymtbjP&md5=c5a52849cad240d579f38c32ccfe034cCAS | 26358423PubMed |

Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environmental Pollution 155, 453–463.
Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKmtrzL&md5=2363c7d238a326b1076a0633fb4593f0CAS | 18456378PubMed |

Holland M, Kinghorn S, Emberson L, Cinderby S, Ashmore M, Mills G, Harmens H (2006) ‘Development of a framework for a probabilistic assessment of the economic losses caused by ozone damage to crops in Europe.’ (Center of Ecology and Hydrology: Bangor, UK)

Hoshika Y, Watanabe M, Inada N, Koike T (2012) Modeling of stomatal conductance for estimating ozone uptake of Fagus crenata under experimentally enhanced free-air ozone exposure. Water, Air, and Soil Pollution 223, 3893–3901.
Modeling of stomatal conductance for estimating ozone uptake of Fagus crenata under experimentally enhanced free-air ozone exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWnt7rI&md5=a884529735c208f77969da0cc427b37dCAS |

Hoshika Y, Carriero G, Feng Z, Zhang Y, Paoletti E (2014) Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. The Science of the Total Environment 481, 453–458.
Determinants of stomatal sluggishness in ozone-exposed deciduous tree species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVWrs78%3D&md5=a95fc9434d1a6aa062d1061dbf11d21aCAS | 24631608PubMed |

Hoshika Y, Watanabe M, Kitao M, Häberle K-H, Grams TEE, Koike T, Matyssek R (2015) Ozone induces stomatal narrowing in European and Siebold’s beeches: a comparison between two experiments of free-air ozone exposure. Environmental Pollution 196, 527–533.
Ozone induces stomatal narrowing in European and Siebold’s beeches: a comparison between two experiments of free-air ozone exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlymurfN&md5=fe329a208952e1de85588cf564ee7f02CAS | 25156633PubMed |

Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240, 1302–1309.
DNA damage and oxygen radical toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXks1yhs78%3D&md5=415b6e1f1e7e57fc469bf044e0aeac40CAS | 3287616PubMed |

Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences 10, 3371–3399.
Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVShtbrK&md5=e1dc275024007576fd0c69a8c4198fe1CAS | 20111684PubMed |

Jardine KJ, Monson RK, Abrell L, Saleska SR, Arneth A, Jardine A, Ishida FY, Serrano AMY, Artaxo P, Karl T, Fares S, Goldstein A, Loreto F, Huxman T (2012) Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Global Change Biology 18, 973–984.
Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein.Crossref | GoogleScholarGoogle Scholar |

Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. In ‘Advances in ecological research. Vol. 15’. (Eds G Woodward, DA Bohan) pp. 1–49. (Academic Press: London, UK)

Kangasjärvi S, Kangasjärvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Advances in Botany 2014, Article ID 538946
Towards understanding extracellular ROS sensory and signaling systems in plants.Crossref | GoogleScholarGoogle Scholar |

Karlsson PE, Braun S, Broadmeadow M, Elvira S, Emberson L, Gimeno BS, Le Thiec D, Novak K, Oksanen E, Schaub M, Uddling J, Wilkinson M (2007) Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environmental Pollution 146, 608–616.
Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12gtb8%3D&md5=7a7d26a5f970535a2f3fd34b4e5713f4CAS | 16938368PubMed |

Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell & Environment 28, 965–981.
Scaling ozone responses of forest trees to the ecosystem level in a changing climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslSgsr4%3D&md5=4888c8a37a637882a87a5bf43d89d560CAS |

Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science 5, 709–725.

Kim YX, Steudle E (2009) Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays. Journal of Experimental Botany 60, 547–556.
Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFSmt7s%3D&md5=78f69f73c372c1081134fb222bb66813CAS | 19088335PubMed |

Kinose Y, Azuchi F, Uehara Y, Kanomata T, Kobayashi A, Yamaguchi M, Izuta T (2014) Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla. Environmental Pollution 194, 235–245.
Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGmtL%2FM&md5=93e87478afa9902972d165c244612875CAS | 25150506PubMed |

Kumari S, Agrawal M, Singh A (2015) Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defense system and metabolites of potato in relation to ozone flux. Environmental and Experimental Botany 109, 276–287.
Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defense system and metabolites of potato in relation to ozone flux.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Wjsr7F&md5=85d322c95a43bf77a571e0bf1822b25fCAS |

Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiology 90, 1163–1167.
Ozone concentration in leaf intercellular air spaces is close to zero.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFWqtLo%3D&md5=b3da99644dceaac547ea6cb585dbab60CAS | 16666867PubMed |

Launiainen S, Katul GG, Grönholm T, Vesala T (2013) Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model. Agricultural and Forest Meteorology 173, 85–99.
Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model.Crossref | GoogleScholarGoogle Scholar |

Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler JP (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant, Cell & Environment 22, 495–504.
Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVeisrc%3D&md5=348eb903ab6e95cf72136485574db60cCAS |

Li G, Shi Y, Chen X (2008) Effects of elevated CO2 and O3 on phenolic compounds in spring wheat and maize leaves. Bulletin of Environmental Contamination and Toxicology 81, 436–439.
Effects of elevated CO2 and O3 on phenolic compounds in spring wheat and maize leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFert7bF&md5=117fb029deaea33c9040ff208667937eCAS | 18781273PubMed |

Llusia J, Bermejo-Bermejo V, Calvete-Sogo H, Peñuelas J (2014) Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization. Environmental Pollution 194, 69–77.
Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kisb%2FO&md5=a2032433a22bb51bd2c528e52bfe3963CAS | 25094059PubMed |

Lombardozzi D, Sparks JP, Bonan G, Levis S (2012) Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169, 651–659.
Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.Crossref | GoogleScholarGoogle Scholar | 22218943PubMed |

Lombardozzi D, Levis S, Bonan G, Hess PG, Sparks JP (2015) The influence of chronic ozone exposure on global carbon and water cycles. Journal of Climate 28, 292–305.
The influence of chronic ozone exposure on global carbon and water cycles.Crossref | GoogleScholarGoogle Scholar |

Loreto F, Fares S (2007) Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiology 143, 1096–1100.
Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyqs7o%3D&md5=613335eb8598f0c27e18ac5834284e7aCAS | 17344434PubMed |

Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiology 24, 361–367.
Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtlKjtr0%3D&md5=1366946b01548aaa85759cc32dbbbfb5CAS | 14757575PubMed |

Matyssek R, Baumgarten M, Hummel U, Häberle KH, Kitao M, Wieser G (2015) Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress – means of preventing enhanced O3 uptake under high O3 exposure? Environmental Pollution 196, 518–526.
Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress – means of preventing enhanced O3 uptake under high O3 exposure?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2ku7bO&md5=0993b8e29652d412cb95a47c4701029aCAS | 25062776PubMed |

Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiological Reviews 95, 1321–1358.
Aquaporins in plants.Crossref | GoogleScholarGoogle Scholar | 26336033PubMed |

Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernandez IG, Grünhage L, Harmens H, Hayes F, Karlsson PE, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmospheric Environment 45, 5064–5068.
New stomatal flux-based critical levels for ozone effects on vegetation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1aiu7Y%3D&md5=00508cfac185d22ef2c2d62064c36532CAS |

Miyazawa S, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Functional Plant Biology 35, 553–564.
Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSrsrrM&md5=ffe3eb245b073217b3fc8a2cf2666df7CAS |

Moldau H, Bichele I (2002) Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces. Planta 214, 484–487.
Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGruw%3D%3D&md5=cf7916c20d1313a798db5057d5fccf30CAS | 11855652PubMed |

Moldau H, Vahisalu T, Kollist H (2011) Rapid stomatal closure triggered by a short ozone pulse is followed by reopening to overshooting values. Plant Signaling & Behavior 6, 311–313.
Rapid stomatal closure triggered by a short ozone pulse is followed by reopening to overshooting values.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yjs7s%3D&md5=10793693085b8b58421095066e425410CAS |

Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochemical & Photobiological Sciences 3, 730–735.
Protein oxidation in plant mitochondria as a stress indicator.Crossref | GoogleScholarGoogle Scholar |

Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling the isoprene emission rate from leaves. New Phytologist 195, 541–559.
Modeling the isoprene emission rate from leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVeis70%3D&md5=caad93dc4f5bb81b1454996079acea4cCAS | 22738087PubMed |

Morfopoulos C, Sperlich D, Peñuelas J, Cubells IF, Llusià J, Medlyn BE, Niinemets Ü, Possell M, Sun Z, Prentice IC (2014) A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytologist 203, 125–139.
A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFWkt78%3D&md5=eaae1febdddf8c5a9d52013f5b2d7d9dCAS | 24661143PubMed |

Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell & Environment 26, 1317–1328.
How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVCgtLs%3D&md5=6eee4042123d1effe9f78cb364c160a0CAS |

Paoletti E, De Marco A, Beddows DCS, Harrison RM, Manning WJ (2014) Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution 192, 295–299.
Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslKmtLk%3D&md5=fe396bb635ab07ec4cf210f9aa18b062CAS | 24906864PubMed |

Patterson WR, Poulos TL (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34, 4331–4341.
Crystal structure of recombinant pea cytosolic ascorbate peroxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Grs7o%3D&md5=2fa7a6fbb4de381a0a7046e7cbd80155CAS | 7703247PubMed |

Pinto D, Blande J, Souza S, Nerg AM, Holopainen J (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. Journal of Chemical Ecology 36, 22–34.
Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1amsLg%3D&md5=428cdeff99d8ba85db9b165992b825d0CAS | 20084432PubMed |

Pleijel H, Danielsson H, Ojanperä K, Temmerman LD, Högy P, Badiani M, Karlsson PE (2004) Relationships between ozone exposure and yield loss in European wheat and potato–a comparison of concentration- and flux-based exposure indices. Atmospheric Environment 38, 2259–2269.
Relationships between ozone exposure and yield loss in European wheat and potato–a comparison of concentration- and flux-based exposure indices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFCltbg%3D&md5=5534272cad00f3a24ceaf3eaab2e3660CAS |

Plöchl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210, 454–467.
Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate.Crossref | GoogleScholarGoogle Scholar | 10750904PubMed |

Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiology 130, 15–21.
Plant lipoxygenases. Physiological and molecular features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFOrsL0%3D&md5=4ca5f66b7cc060d6e663401a6a796d32CAS | 12226483PubMed |

Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: Responses and mechanisms. In ‘Biology, controls and models of tree volatile organic compound emissions. Vol. 5’. (Eds Ü Niinemets, RK Monson) pp. 209–235. (Springer: Dordrecht, The Netherlands)

Pyakurel A, Wang JR (2014) Leaf morphological and stomatal variations in paper birch populations along environmental gradients in Canada. American Journal of Plant Sciences 5, 1508–1520.
Leaf morphological and stomatal variations in paper birch populations along environmental gradients in Canada.Crossref | GoogleScholarGoogle Scholar |

Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mutation Research/DNAging 275, 249–255.
Reactive oxygen and DNA damage in mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVSq&md5=623293e65cd15bb57e6250006ed6eba3CAS |

Royal Society (2008) ‘Ground-level ozone in the 21st century: future trends, impacts and policy implications.’ (Royal Society: London)

Rozpądek P, Ślesak I, Cebula S, Waligórski P, Dziurka M, Skoczowski A, Miszalski Z (2013) Ozone fumigation results in accelerated growth and persistent changes in the antioxidant system of Brassica oleracea L. var. capitata f. alba. Journal of Plant Physiology 170, 1259–1266.
Ozone fumigation results in accelerated growth and persistent changes in the antioxidant system of Brassica oleracea L. var. capitata f. alba.Crossref | GoogleScholarGoogle Scholar | 23773692PubMed |

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012, Article ID 217037
Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.Crossref | GoogleScholarGoogle Scholar |

Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agriculture, Ecosystems & Environment 135, 168–177.
Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaisrzN&md5=bf5a276006cddf655cd96951ab7b20d3CAS |

Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794.
Indirect radiative forcing of climate change through ozone effects on the land-carbon sink.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVGrsLo%3D&md5=6a2aaf991dc3ab4a07c09fc323edb9feCAS | 17653194PubMed |

Spinelli F, Cellini A, Marchetti L, Mudigere K, Piovene C (2011) Emission and function of volatile organic compounds in response to abiotic stress. In ‘Abiotic stress in plants – mechanisms and adaptations’. (Eds A Schanker, B Venkateswarlu) pp. 1–29. (InTech: Rijeka, Croatia)

Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine 18, 321–336.
Oxidative mechanisms in the toxicity of metal ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFOrsLg%3D&md5=14b5ead2b19cbd767c0931793f5e0d9bCAS |

Tarvainen L, Wallin G, Räntfors M, Uddling J (2013) Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand. Oecologia 173, 1179–1189.
Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.Crossref | GoogleScholarGoogle Scholar | 23797410PubMed |

Tausz M, Grulke NE, Wieser G (2007) Defense and avoidance of ozone under global change. Environmental Pollution 147, 525–531.
Defense and avoidance of ozone under global change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Chtbk%3D&md5=9b35bf691361fc276aaa41cd1fff1650CAS | 17055629PubMed |

Tingey DT (1979) The influence of light and temperature on isoprene emission rates from live oak. Physiologia Plantarum 47, 112–118.
The influence of light and temperature on isoprene emission rates from live oak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvVyqtw%3D%3D&md5=0479ddda489fc43e942571437585cf79CAS |

Tiwari S, Agrawal M (2011) Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions. Environmental Monitoring and Assessment 175, 443–454.
Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislOqsbc%3D&md5=d5121b7ea7d31472be16877d94326348CAS | 20582740PubMed |

Federal Environmental Agency (2004) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Texte 52/04, Berlin, Germany.

Vahisalu T, Puzõrjova I, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang Y-S, Lindgren O, Salojärvi J, Loog M, Kangasjärvi J, Kollist H (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal 62, 442–453.
Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFygsL0%3D&md5=252944c12c9ea88af28d7770168b752aCAS | 20128877PubMed |

Valkama E, Koricheva J, Oksanen E (2007) Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biology 13, 184–201.
Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiology 147, 978–984.
Unraveling the tapestry of networks involving reactive oxygen species in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyisr0%3D&md5=087364198b933ce1e28bd09c2890a58bCAS | 18612075PubMed |

van Oijen M, Dreccer MF, Firsching K-H, Schnieders BJ (2004) Simple equations for dynamic models of the effects of CO2 and O3 on light-use efficiency and growth of crops. Ecological Modelling 179, 39–60.
Simple equations for dynamic models of the effects of CO2 and O3 on light-use efficiency and growth of crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlSjsrw%3D&md5=836938001b57236b45f90e5910140afeCAS |

Van Wittenberghe S, Adriaenssens S, Staelens J, Verheyen K, Samson R (2012) Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees – Structure and Function 26, 1427–1438.
Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient.Crossref | GoogleScholarGoogle Scholar |

VanLoocke A, Betzelberger AM, Ainsworth EA, Bernacchi CJ (2012) Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency whilst increasing canopy temperature. New Phytologist 195, 164–171.
Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency whilst increasing canopy temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSgtr7O&md5=73f6145e0c766a2c3f917844ae8966baCAS | 22524697PubMed |

Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F (2005) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytologist 166, 419–426.
Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlWqsL4%3D&md5=c0546bd8dc017f35499b3216cfce08a9CAS | 15819906PubMed |

Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signaling & Behavior 7, 139–141.
Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species.Crossref | GoogleScholarGoogle Scholar |

Velikova V, Ghirardo A, Vanzo E, Merl J, Hauck SM, Schnitzler J-P (2014) The genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome. Journal of Proteome Research 13, 2005–2018.
The genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKktL4%3D&md5=704bdab5cf0991c56cdfd22d4ee22f82CAS | 24650239PubMed |

Velikova V, Müller C, Ghirardo A, Rock TM, Aichler M, Walch A, Schmitt-Kopplin P, Schnitzler J-P (2015) Knocking down of isoprene emission modifies the lipid matrix of thylakoid membranes and influences the chloroplast ultrastructure in poplar. Plant Physiology 168, 859–870.
Knocking down of isoprene emission modifies the lipid matrix of thylakoid membranes and influences the chloroplast ultrastructure in poplar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Slt7zP&md5=1eafa371fd6301c20d8eb7dc2f0ece70CAS | 25975835PubMed |

Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology 5, 283–291.
A unified mechanism of action for volatile isoprenoids in plant abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ksbg%3D&md5=ce9e6855ad5ca95a202e7321e0bbdd79CAS | 19377454PubMed |

Vickers CE, Bongers M, Liu Q, Delatte T, Bouwmeester H (2014) Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell & Environment 37, 1753–1775.
Metabolic engineering of volatile isoprenoids in plants and microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOlsLrL&md5=884dcf7f712ed078fe2142f2f3add0e9CAS |

Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal 16, 4806–4816.
Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslOhs7c%3D&md5=e6ef3f153eca326101e3d9af4df006c4CAS | 9305623PubMed |

Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment 30, 1150–1162.
To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeiurrK&md5=f5ee5ef69918b6ca64c6516585691dddCAS |