Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Comparative proteomic and physiological characterisation of two closely related rice genotypes with contrasting responses to salt stress

Seyed Abdollah Hosseini A , Javad Gharechahi B , Manzar Heidari A , Parisa Koobaz A , Shapour Abdollahi A , Mehdi Mirzaei C , Babak Nakhoda A E and Ghasem Hosseini Salekdeh D E
+ Author Affiliations
- Author Affiliations

A Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran.

B Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395-5478, Tehran 1435916471, Iran.

C Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.

D Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran.

E Corresponding authors. Emails: h_salekdeh@abrii.ac.ir; b.nakhoda@abrii.ac.ir

Functional Plant Biology 42(6) 527-542 https://doi.org/10.1071/FP14274
Submitted: 30 September 2014  Accepted: 7 February 2015   Published: 26 March 2015

Abstract

Salinity is a limiting factor affecting crop growth. We evaluated the responses of a salt-tolerant recombinant inbred rice (Oryza sativa L.) line, FL478, and the salt-sensitive IR29. Seedlings were exposed to salt stress and the growth rate was monitored to decipher the effect of long-term stress. At Day 16, IR29 produced lower shoot biomass than FL478. Significant differences for Na+ and K+ concentrations and Na+ : K+ ratios in roots and shoots were observed between genotypes. Changes in the proteomes of control and salt-stressed plants were analysed, identifying 59 and 39 salt-responsive proteins in roots and leaves, respectively. Proteomic analysis showed greater downregulation of proteins in IR29. In IR29, proteins related to pathways involved in salt tolerance (e.g. oxidative stress response, amino acid biosynthesis, polyamine biosynthesis, the actin cytoskeleton and ion compartmentalisation) changed to combat salinity. We found significant downregulation of proteins related to photosynthetic electron transport in IR29, indicating that photosynthesis was influenced, probably increasing the risk of reactive oxygen species formation. The sensitivity of IR29 might be related to its inability to exclude salt from its transpiration stream, to compartmentalise excess ions and to maintain a healthy photosynthetic apparatus during salt stress, or might be because of the leakiness of its roots, allowing excess salt to enter apoplastically. In FL478, superoxide dismutase, ferredoxin thioredoxin reductase, fibre protein and inorganic pyrophosphatase, which may participate in salt tolerance, increased in abundance. Our analyses provide novel insights into the mechanisms behind salt tolerance and sensitivity in genotypes with close genetic backgrounds.

Additional keywords: 2D gel electrophoresis, mass spectrometry, Oryza sativa, salinity, sensitivity, tolerance.


References

Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4, 2072–2081.
A proteomic approach to analyze salt-responsive proteins in rice leaf sheath.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslKjur0%3D&md5=a8e3be1d300d235c6a3284517e2b0e5dCAS | 15221768PubMed |

Abe K, Kondo H, Watanabe H, Emori Y, Arai S (1991) Oryzacystatins as the first well-defined cystatins of plant origin and their target proteinases in rice seeds. Biomedica Biochimica Acta 50, 637–641.

Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotechnology Journal 10, 453–464.
Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1ygs7s%3D&md5=748587d8317ebb2666700dbbea7af54eCAS | 22284568PubMed |

Barkla BJ, Vera-Estrella R, Hernández-Coronado M, Pantoja O (2009) Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. The Plant Cell 21, 4044–4058.
Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFSis7s%3D&md5=b395fc233986a60fdfc79d228f24d17cCAS | 20028841PubMed |

Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiologia Plantarum 116, 192–199.
Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslSktbw%3D&md5=fc0f1b01167def9d31eb93e95d49f62fCAS | 12354195PubMed |

Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiology and Biochemistry 47, 407–415.
Mitochondrial proteome during salt stress-induced programmed cell death in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2ltbY%3D&md5=10a46098d2956a73ac8ac21f5ecb2e58CAS | 19217306PubMed |

Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9, 3100–3114.
New changes in the plasma-membrane-associated proteome of rice roots under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGgtb4%3D&md5=9ce5467538a70e4624d770b78807972eCAS | 19526560PubMed |

Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Molecular Plant 4, 25–41.
Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemurc%3D&md5=74c4b4bfdc61596bc015a2d8e53c581eCAS | 20924028PubMed |

Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7, 52–54.
Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVGnt70%3D&md5=977bb3355795361c42ea93138c9fd60bCAS |

de las Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology 142, 722–730.
Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFarsbfE&md5=f6792d16c3ff63a6077e4a0089e1a056CAS | 16891545PubMed |

Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135, 1–9.
Antioxidant responses of rice seedlings to salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGjtr0%3D&md5=f6c95c7cc56c84fadba40e4867fefc77CAS |

Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6, 6498–6507.
Proteomic responses of rice young panicles to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Kisg%3D%3D&md5=33c7aa268a8ec86d275dd1522e94ef99CAS | 17163441PubMed |

Dowling NG, Greenfield SM, Fischer K (1998) ‘Sustainability of rice in the global food system.’ (International Rice Research Institute: Manila, Philippines)

Feng Y, Liu Q, Xue Q (2006) Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. Journal of Plant Physiology 163, 69–79.
Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12lu7g%3D&md5=7811212e4b572ad774d139a80333f4b5CAS | 16360805PubMed |

Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J (2007) Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A–2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiology 144, 1531–1545.
Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A–2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Olsb8%3D&md5=b9bae7ac46aa70080d5ed0310cecd4beCAS | 17513484PubMed |

Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytologist 88, 363–373.
Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlt12ksL8%3D&md5=80de01f98504ae4f8a346e73d3667f87CAS |

Gelhaye E, Rouhier N, Jacquot JP (2004) The thioredoxin H system of higher plants. Plant Physiology and Biochemistry 42, 265–271.
The thioredoxin H system of higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ejsbk%3D&md5=53a65bf86d315eb86315ee1e3bc92f7aCAS | 15120110PubMed |

Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH (2014) Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of Plant Physiology 171, 31–44.
Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOgtrfF&md5=0497003ae6b4082774f3b27fa1610a22CAS | 24094368PubMed |

Gharechahi J, Khalili M, Hasanloo T, Salekdeh GH (2013) An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Plant Physiology and Biochemistry 70, 115–122.
An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOktL3K&md5=e28286e8959f6e1ecfa186389598a6dbCAS | 23771036PubMed |

Gharechahi J, Hajirezaei MR, Salekdeh GH (2014) Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. Journal of Plant Physiology 175, 48–58.

Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior 5, 26–33.
Polyamines and abiotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVynsL4%3D&md5=9363558b10b2c04edd847c1651107430CAS |

Gordon ED, Mora R, Meredith SC, Lee C, Lindquist SL (1987) Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. The Journal of Biological Chemistry 262, 16 585–16 589.

Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology 4, 117
Comparing protein abundance and mRNA expression levels on a genomic scale.Crossref | GoogleScholarGoogle Scholar | 12952525PubMed |

Gregorio GB (1997) ‘Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP).’ (University of the Philippines: Los Banos)

Henderson A, Hershey JW (2011) Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 108, 6415–6419.
Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1ahtr8%3D&md5=9c4d6bedf4cae6d9d98f3635f753223dCAS | 21451136PubMed |

Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant & Cell Physiology 42, 462–468.
A large family of class III plant peroxidases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVWntrY%3D&md5=1ced9701bde6d446bb38b695541a97d5CAS |

Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiology 81, 802–806.
Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFWgu78%3D&md5=6423b0f88fd04012916cbfad8cc2e4c6CAS | 16664906PubMed |

Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58, 3591–3607.
Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhurjP&md5=860f07cc71dc81bfbd34406a6b7c0602CAS | 17916636PubMed |

Jordan DB, Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. The Journal of Biological Chemistry 258, 13752–13758.

Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science 169, 369–373.
Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFalsbY%3D&md5=54b497bda582ff5d3d8c381a8ff80856CAS |

Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell 13, 889–905.
Gene expression profiles during the initial phase of salt stress in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFajsrw%3D&md5=acba2622aa90386ac6fee66a659bb193CAS | 11283343PubMed |

Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim I -S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26, 4521–4539.
A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleks7bJ&md5=5377abcfc44f91dc0c3b43243b44b943CAS | 16315177PubMed |

Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proceedings of the National Academy of Sciences of the United States of America 88, 8222–8226.
Ferritin gene transcription is regulated by iron in soybean cell cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGrsLo%3D&md5=3d10edf3abf89a0fdf048c97e3a75b05CAS | 1896472PubMed |

Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochimica et Biophysica Acta 1804, 929–940.
Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1Sjsbg%3D&md5=fc7df3f5e27f094a7868b7deae25087bCAS | 20079886PubMed |

Li W, Guan Q, Wang ZY, Wang Y, Zhu J (2013) A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis. Molecular Plant 6, 1344–1354.
A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFClt7fE&md5=6d56213d934e313b25afc1f21a9c2ac2CAS | 23571490PubMed |

Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC (2012) Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Communications in Mass Spectrometry 26, 1649–1660.
Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWntb8%3D&md5=83781d511cd77c4a521f7f45d7af7c6eCAS | 22730086PubMed |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=322bb6fd44685e306f8210cd65b59997CAS | 11846609PubMed |

Maiale S, Sanchez DH, Guirado A, Vidal A, Ruiz OA (2004) Spermine accumulation under salt stress. Journal of Plant Physiology 161, 35–42.
Spermine accumulation under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1eiurg%3D&md5=833a85e875d7a7fc4fb87d133614d221CAS | 15002662PubMed |

Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 127–158.
The functions and regulation of glutathione S-transferases in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlWgsbo%3D&md5=b370c311c73b7d92a464513b66702672CAS | 15012285PubMed |

May MJ, Vernoux T, Leaver C, Montagu MV, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany 49, 649–667.

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Comparative physiology of salt and water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslakurw%3D&md5=d2b9366c3d24fa1829f031028f2990d7CAS |

Munns R (2010) Approaches to identifying genes for salinity tolerance and the importance of timescale. Methods in Molecular Biology 639, 25–38.
Approaches to identifying genes for salinity tolerance and the importance of timescale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFGgtbo%3D&md5=766aa3667319faa985720d886ffec9aaCAS | 20387038PubMed |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=e2ba555e0946a244ab5e98e4f2e7cc4dCAS | 18444910PubMed |

Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Science 10, 25
Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWitbk%3D&md5=ef6f068d069ca3860d6eaed879ce3ee7CAS | 22462395PubMed |

Ndayiragije A, Lutts S (2006) Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? Journal of Plant Physiology 163, 506–516.
Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVeksr4%3D&md5=3026750c31d2b8aa3500ed272e58b12dCAS | 16473655PubMed |

Neily MH, Baldet P, Arfaoui I, Saito T, Li Q-l, Asamizu E, Matsukura C, Moriguchi T, Ezura H (2011) Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants. Plant Biotechnology 28, 33–42.
Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFagt7g%3D&md5=a0e47b4ea1e408851ff4921bc44555f0CAS |

Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Salekdeh GH (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Bioscience, Biotechnology, and Biochemistry 71, 2144–2154.
Proteomics reveals new salt responsive proteins associated with rice plasma membrane.Crossref | GoogleScholarGoogle Scholar | 17827676PubMed |

Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiology 129, 1119–1126.
Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFajs7o%3D&md5=57ea86fb316f36e03841a630f008c2eaCAS | 12114566PubMed |

Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. The Biochemical Journal 357, 241–247.
Ferritin and the response to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Ojurc%3D&md5=0797ba03bffb04dc28e448ead47dd02eCAS | 11415455PubMed |

Otero AS (2000) NM23/nucleoside diphosphate kinase and signal transduction. Journal of Bioenergetics and Biomembranes 32, 269–275.
NM23/nucleoside diphosphate kinase and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1yhu7w%3D&md5=45bbcaaeb3568897a0b1a4e2c98a27e6CAS | 11768310PubMed |

Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiology 134, 1514–1526.
Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmsL4%3D&md5=d2c16cda46b279113253ca5dc433958eCAS | 15051861PubMed |

Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. Journal of Experimental Botany 57, 1109–1118.
An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Gls7k%3D&md5=9135af848ac4dc9d18562e77f09a11beCAS | 16513811PubMed |

Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research 17, 281–291.
Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSks74%3D&md5=df82a007a9810ba240cbba5f893df591CAS | 17541718PubMed |

Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Current Opinion in Biotechnology 26, 115–124.
Salt resistant crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Cns7c%3D&md5=b60e08146d0a591f936ecd1c1d4d603fCAS | 24679267PubMed |

Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biology 11, 34
Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Sgsbo%3D&md5=eb37363ad1e1883ad9c1491165e3b980CAS | 21324151PubMed |

Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7, 2976–2996.
Crop proteomics: aim at sustainable agriculture of tomorrow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVelsL7K&md5=099cb282a0a96a2433a464e7ed9a0cf1CAS | 17639607PubMed |

Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research 76, 199–219.
A proteomic approach to analyzing drought- and salt-responsiveness in rice.Crossref | GoogleScholarGoogle Scholar |

Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends in Plant Science 14, 488–496.
Conceptual framework for drought phenotyping during molecular breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2lurnK&md5=5ab8aa4555db7c2c1ba3df6ab93179eaCAS | 19716744PubMed |

Sánchez-Aguayo I, Rodríguez-Galán JM, García R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220, 278–285.
Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants.Crossref | GoogleScholarGoogle Scholar | 15322882PubMed |

Sarhadi E, Bazargani MM, Sajise AG, Abdolahi S, Vispo NA, Arceta M, Nejad GM, Singh RK, Salekdeh GH (2012) Proteomic analysis of rice anthers under salt stress. Plant Physiology and Biochemistry 58, 280–287.
Proteomic analysis of rice anthers under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1emsrjL&md5=959f84bc074ad0887145e9f07be9f370CAS | 22868211PubMed |

Schluter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet MC, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. Journal of Experimental Botany 61, 4169–4183.
Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.Crossref | GoogleScholarGoogle Scholar | 20581122PubMed |

Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. Journal of Proteomics 74, 1045–1067.
Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWis78%3D&md5=1bccbf9ceb7454ea4da74a7f82c1c6e7CAS | 21420516PubMed |

Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T (2005) Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-l-methionine synthetase in leaves of the halophyte Atriplex nummularia L. Plant & Cell Physiology 46, 505–513.
Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-l-methionine synthetase in leaves of the halophyte Atriplex nummularia L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVyis7g%3D&md5=3f3192d84ddeaee18b952d99e44fd43fCAS |

Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148, 131–138.
Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVGqsbY%3D&md5=1efeb1395926820871d630870ddd39a5CAS |

Tang L, Kim MD, Yang KS, Kwon SY, Kim SH, Kim JS, Yun DJ, Kwak SS, Lee HS (2008) Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Research 17, 705–715.
Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFyitb4%3D&md5=7b1d0883b245015fe6b395f2dff18430CAS | 18027101PubMed |

Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environmental and Experimental Botany 67, 2–9.
Recent developments in understanding salinity tolerance.Crossref | GoogleScholarGoogle Scholar |

Wai SN, Nakayama K, Umene K, Moriya T, Amako K (1996) Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress. Molecular Microbiology 20, 1127–1134.
Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFWht70%3D&md5=235682ddd7740d5bb346eb1f0e69fe0fCAS | 8809765PubMed |

Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiology 139, 822–835.
Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsb7K&md5=4ce9d8de5ae965b5c9bfcc442b5e8576CAS | 16183841PubMed |

Wen X-P, Ban Y, Inoue H, Matsuda N, Kita M, Moriguchi T (2011) Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environmental and Experimental Botany 72, 157–166.
Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Kqsb0%3D&md5=5f32657da3e67e801997fb9d6448d779CAS |

Wirtz M, Droux M (2005) Synthesis of the sulfur amino acids: cysteine and methionine. Photosynthesis Research 86, 345–362.
Synthesis of the sulfur amino acids: cysteine and methionine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFyg&md5=7603563a4a860b6fd64d08fada0423dbCAS | 16307301PubMed |

Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5, 235–244.
Proteomic analysis of salt stress-responsive proteins in rice root.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleisL8%3D&md5=fdb39d1f363783cd2f26dda4475ca988CAS | 15672456PubMed |

Ye ZH, Zhong R, Morrison WH, Himmelsbach DS (2001) Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57, 1177–1185.
Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1OjtL4%3D&md5=65d7c453394af8ffa6fae8175a772c12CAS | 11430990PubMed |

Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology 68, 131–143.
Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGltLc%3D&md5=9fea250e35db4e310537fb8772f9b0b9CAS | 18523728PubMed |

Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell, Tissue and Organ Culture 86, 349–358.
Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFWlsrs%3D&md5=b1be38219c7e3a6df2d1d53c60fd8d09CAS |

Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. The EMBO Journal 17, 2914–2925.
A single amino acid substitution in yeast eIF-5A results in mRNA stabilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslyksLs%3D&md5=0343f94b2c3f958fb6431e69a7a80a87CAS | 9582285PubMed |