Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Hydrogen peroxide promotes programmed cell death and salicylic acid accumulation during the induced production of sesquiterpenes in cultured cell suspensions of Aquilaria sinensis

Juan Liu A , Yanhong Xu A , Zheng Zhang A B and Jianhe Wei A B C
+ Author Affiliations
- Author Affiliations

A Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.

B Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China.

C Corresponding author. Email: weijianhe126@126.com; wjianh@263.net

Functional Plant Biology 42(4) 337-346 https://doi.org/10.1071/FP14189
Submitted: 20 July 2014  Accepted: 7 November 2014   Published: 2 December 2014

Abstract

Aquilaria sinensis (Lour.) Gilg produces a highly valuable agarwood characterised by a diverse array of sesquiterpenes and chromone derivatives that can protect wounded trees against potential herbivores and pathogens. A defensive reaction on the part of the plant has been proposed as the key reason for agarwood formation, but the issue of whether programmed cell death (PCD), an important process of plant immune responding, is involved in agarwood formation, still needs to be clarified. In this study, treatment of cultured cell suspensions with hydrogen peroxide (H2O2) induced the production of sesquiterpenes due to endogenous accumulation of salicylic acid (SA) and elevations in the expression of sesquiterpene biosynthetic genes. Moreover, PCD was stimulated by H2O2 in cultured cell suspensions of A. sinensis due to the induction of caspase activity, upregulated expression of metacaspases and cytochrome c, and SA accumulation. Our findings demonstrate for the first time that H2O2 stimulates PCD, SA accumulation and sesquiterpene production in cultured cell suspensions of A. sinensis. Furthermore, results from this study provide a valuable insight into investigations of the potential interactions between sesquiterpene synthesis and PCD during agarwood formation.

Additional keywords: agarwood, PCD, reactive oxygen species, ROS, SA, salicylic acid.


References

Brodersen P, Malinovsky FG, Hématy K, Newman MA, Mundy J (2005) The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology 138, 1037–1045.
The role of salicylic acid in the induction of cell death in Arabidopsis acd11.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVejsL0%3D&md5=3ba552e13ce0b8f4f24b24dd14988a9dCAS | 15923330PubMed |

Cao XY, Yin T, Miao Q, Li HG, Ju XY, Sun Y, Jiang JH (2012) Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr. Molecular Biology Reports 39, 1487–1492.
Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOktQ%3D%3D&md5=9b280f11821c1d3805c93d59d2a401bdCAS |

Cardile V, Russo A, Formisano C, Rigano D, Senatore F, Arnold NA, Piozzi F (2009) Essential oils of Salvia bracteata and Salvia rubifolia from Lebanon: chemical composition, antimicrobial activity and inhibitory effect on human melanoma cells. Journal of Ethnopharmacology 126, 265–272.
Essential oils of Salvia bracteata and Salvia rubifolia from Lebanon: chemical composition, antimicrobial activity and inhibitory effect on human melanoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGjt7rM&md5=4fd70cd04c76959f23836676a9ac2dd8CAS | 19715748PubMed |

Chen HQ, Yang Y, Xue J, Wei J, Zhang Z, Chen H (2011) Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees. Molecules 16, 4884–4896.
Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFehsrk%3D&md5=35821d50919e154d3c1d48a032d5df4dCAS |

Chen HQ, Wei JH, Yang JS, Zhang Z, Yang Y, Gao ZH, Sui C, Gong B (2012) Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chemistry & Biodiversity 9, 236–250.
Chemical constituents of agarwood originating from the endemic genus Aquilaria plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlyhsrc%3D&md5=295679fc6f0b9589f8b3214beb0c411bCAS |

Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. The Plant Cell 16, 157–171.
A plant caspase-like protease activated during the hypersensitive response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVeltA%3D%3D&md5=c9c55f4c703f76c3b8a75c2155511f69CAS | 14660804PubMed |

China Pharmacopoeia Committee (2010) ‘The pharmacopoeia of People’s Republic of China (I).’ (Chemical Industry Press: Beijing)

Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death and Differentiation 18, 1247–1256.
Programmed cell death in the plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Gkurg%3D&md5=3142fbcfee6a5dbd16e596c0c49b4c34CAS | 21475301PubMed |

Danner H, Boeckler GA, Irmisch S, Yuan JS, Chen F (2011) Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa. Phytochemistry 72, 897–908.
Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVCis7k%3D&md5=60b939356717a801a7d7561fefe757c7CAS | 21492885PubMed |

Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. Journal of Biological Chemistry 279, 779–787.
Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSqtLzI&md5=e402fcfa61738277e8d1354c1b6f61e4CAS | 14573611PubMed |

Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis Book 9, e0156
Salicylic acid biosynthesis and metabolism.Crossref | GoogleScholarGoogle Scholar |

Diamond M, Reape TJ, Rocha O, Doyle SM, Kacprzyk J, Doohan FM, McCabe PF (2013) The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS ONE 8, e69542
The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GisLnJ&md5=bbd9386a9688a0756fba76e5da959acfCAS | 23922734PubMed |

Díaz-Moreno I, García-Heredia JM, Díaz-Quintana A, De la Rosa MA (2011) Cytochrome c signalosome in mitochondria. European Biophysics Journal 40, 1301–1315.
Cytochrome c signalosome in mitochondria.Crossref | GoogleScholarGoogle Scholar | 22086608PubMed |

Gao Z, Wei J, Yang Y, Zhang Z, Zhao WT (2012) Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis. Plant Cell Reports 31, 1759–1768.
Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rsbrL&md5=327e296e93184c2e1073b6c14c01f00cCAS | 22678434PubMed |

Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends in Plant Science 15, 176–184.
Multiple stress factors and the emission of plant VOCs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFGnsrg%3D&md5=687b7f19ee5bf9747418d2a6ae660ac6CAS | 20144557PubMed |

Ito M, Okimoto K, Yagura T, Honda G (2005) Induction of sesquiterpenoid production by methyl jasmonate in Aquilaria sinensis cell suspension culture. Journal of Essential Oil Research 17, 175–180.
Induction of sesquiterpenoid production by methyl jasmonate in Aquilaria sinensis cell suspension culture.Crossref | GoogleScholarGoogle Scholar |

Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology 57, 231–245.
Reactive oxygen intermediates as mediators of programmed cell death in plants and animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitV2mtA%3D%3D&md5=d1707c5147845d8311f0a5307dd424a8CAS | 9890550PubMed |

Jabs T, Dietrich RA, Dangl JF (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856.
Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFCrsLk%3D&md5=dd90174c408de168624eb4686633282fCAS | 8791589PubMed |

Korthout H, Berecki G, Bruin W, van Duijing B, Wang M (2000) The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Letters 475, 139–144.
The presence and subcellular localization of caspase 3-like proteinases in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVSnurw%3D&md5=6d16ff864bae647ddc40214b06cca981CAS | 10858505PubMed |

Kumeta Y, Ito M (2010) Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiology 154, 1998–2007.
Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2jtr7I&md5=a39523d4a2613f4e6b0daff163a08fc8CAS | 20959422PubMed |

Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Molecular Biology 44, 417–428.
Caspase-like protease involvement in the control of plant cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFajug%3D%3D&md5=68c6a09c818cdff717db83d31f4d6db3CAS | 11199398PubMed |

Lam E, Pontier D, Pozo O (1999) Die and let live – programmed cell death in plants. Current Opinion in Plant Biology 2, 502–507.
Die and let live – programmed cell death in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVKqtQ%3D%3D&md5=2eb0accf34d2427bf0dc8802732eeb82CAS | 10607660PubMed |

Loizzo MR, Tundis R, Menichini F, Saab AM, Statti GA, Menichini F (2007) Cytotoxic activity of essential oils from Labiatae and Laburaceae families against in vitro human tumor models. Anticancer Research 27, 3293–3300.

Lord CEN, Gunawardena AHLAN (2012) Programmed cell death in C. elegans, mammals and plants. European Journal of Cell Biology 91, 603–613.
Programmed cell death in C. elegans, mammals and plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1egt7s%3D&md5=084f2100049b878e26f149359f6ce477CAS |

Lyubushkina IV, Grabelnych OI, Pobezhimova TP, Stepanov AV, Fedyaeva AV, Fedoseeva IV, Voinikov VK (2014) Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death. Protoplasma 251, 615–623.
Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death.Crossref | GoogleScholarGoogle Scholar | 24126671PubMed |

Mateo A, Mühlenbock P, Rusterucci C, Chang CCC, Miszalski Z, Karpińska B, Parker JE, Mullineaux PM, Karpiński S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology 136, 2818–2830.
LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOqsrk%3D&md5=6b4c95c97f3559c631d5f39615f52fcdCAS | 15347794PubMed |

Matsushita Y, Kang WK, Charlwood BV (1996) Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172, 207–209.
Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFOgs7Y%3D&md5=d1a2eaa1a0f916581ba8073be89b7422CAS | 8682304PubMed |

Medina HMJ, Gagnon H, Piché Y, Ocampo JA, García Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science 164, 993–998.
Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant.Crossref | GoogleScholarGoogle Scholar |

Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour and Fragrance Journal 26, 73–87.
The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKqu7Y%3D&md5=4bef829c109edf3d23e99f8e86939c54CAS |

Okudera Y, Ito M (2009) Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnology 26, 307–315.
Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVeisLs%3D&md5=409f1923ef23f9ec2418c3c6b8b24a43CAS |

Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjärvi J (2000) The ozone-sensitive Arabidopsis cd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. The Plant Cell 12, 1849–1862.
The ozone-sensitive Arabidopsis cd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFaisL8%3D&md5=199313468c818ccc8b4ae75f3ef95e9dCAS | 11041881PubMed |

Rodríguez-Serrano M, Bárány I, Prem D, Coronado M, Risueno MC, Testillano PS (2012) NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. Journal of Experimental Botany 63, 2007–2024.
NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley.Crossref | GoogleScholarGoogle Scholar | 22197894PubMed |

Takemoto H, Ito M, Shiraki T, Yagura T, Honda G (2008) Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. Journal of Natural Medicines 62, 41–46.
Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCgtr0%3D&md5=780737d3e86299535707be8adf33829cCAS | 18404340PubMed |

Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiology 141, 208–219.
Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyqt70%3D&md5=da60eb08dd62f980cd4da25c5371fad0CAS | 16531480PubMed |

Xing F, Li Z, Sun A, Xing D (2013) Reactive oxygen species promote chloroplast dysfunction and salicylic acid accumulation in fumonisin B1-induced cell death. FEBS Letters 587, 2164–2172.
Reactive oxygen species promote chloroplast dysfunction and salicylic acid accumulation in fumonisin B1-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVCnurc%3D&md5=f2abde9cd7349fccf89c94c6b63dcc50CAS | 23711368PubMed |

Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W (2013) Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genomics 14, 227
Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1yhsL0%3D&md5=1cecd71f2db8a390f5e5c67fd7d480a7CAS | 23565705PubMed |

Yoshinaga K, Arimura SI, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Annals of Botany 96, 337–342.
Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1ymt74%3D&md5=264323d89676d4f878829406b9786e72CAS | 15944174PubMed |

Young TE, Gallie DR (2000) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Molecular Biology 42, 397–414.
Regulation of programmed cell death in maize endosperm by abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVKkurk%3D&md5=425620ad8da7e9c34a975caf733a475aCAS | 10794539PubMed |

Zhang Z, Zhang X, Yang Y, Wei J, Meng H, Gao Z, Xu Y (2014) Hydrogen peroxide induces vessel occlusions and stimulates sesquiterpenes accumulation in stems of Aquilaria sinensis. Plant Growth Regulation 72, 81–87.
Hydrogen peroxide induces vessel occlusions and stimulates sesquiterpenes accumulation in stems of Aquilaria sinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt12ktQ%3D%3D&md5=f40d4abc499d3163b07889370bb569f3CAS |

Zhao P, Zhou X, Zhang L, Wang W, Ma LG, Yang LB, Peng XB, Bozhkov PV, Sun MX (2013) A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos. PLoS Biology 11, e1001655
A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKitbnI&md5=97e6ad1e35a84e10206db5570651d9a1CAS | 24058297PubMed |