Environmental stress activation of plant long-terminal repeat retrotransposons
Ahmed M. Alzohairy A , Jamal S. M. Sabir B , Gábor Gyulai C , Rania A. A. Younis D , Robert K. Jansen B E and Ahmed Bahieldin B D FA Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
B King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia.
C Institute of Genetics and Biotechnology, St. Stephanus University, Gödöllő H-2103, Hungary.
D Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
E Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
F Corresponding author. Email: bahieldin55@gmail.com
Functional Plant Biology 41(6) 557-567 https://doi.org/10.1071/FP13339
Submitted: 22 November 2013 Accepted: 23 January 2014 Published: 5 March 2014
Abstract
Genomic retrotransposons (RTs) are major components of most plant genomes. They spread throughout the genomes by a process termed retrotransposition, which consists of reverse transcription and reinsertion of the copied element into a new genomic location (a copy-and-paste system). Abiotic and biotic stresses activate long-terminal repeat (LTR) RTs in photosynthetic eukaryotes from algae to angiosperms. LTR RTs could represent a threat to the integrity of host genomes because of their activity and mutagenic potential by epigenetic regulation. Host genomes have developed mechanisms to control the activity of the retroelements and their mutagenic potential. Some LTR RTs escape these defense mechanisms, and maintain their ability to be activated and transpose as a result of biotic or abiotic stress stimuli. These stimuli include pathogen infection, mechanical damage, in vitro tissue culturing, heat, drought and salt stress, generation of doubled haploids, X-ray irradiation and many others. Reactivation of LTR RTs differs between different plant genomes. The expression levels of reactivated RTs are influenced by the transcriptional and post-transcriptional gene silencing mechanisms (e.g. DNA methylation, heterochromatin formation and RNA interference). Moreover, the insertion of RTs (e.g. Triticum aestivum L. Wis2–1A) into or next to coding regions of the host genome can generate changes in the expression of adjacent host genes of the host. In this paper, we review the ways that plant genomic LTR RTs are activated by environmental stimuli to affect restructuring and diversification of the host genome.
Additional keywords: genome dynamics, transposition, retroelement.
References
Alzohairy AM, Yousef MA, Edris S, Kerti B, Gyulai G, Sabir JSM, Radwan NA, Baeshen MN, Baeshen NA, Bahieldin A (2012) Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT-qPCR. Life Science Journal 9, 5019–5026.Alzohairy AM, Gyulai G, Jansen RK, Bahieldin A (2013) Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 69, 1–15.
| Transposable elements domesticated and neofunctionalized by eukaryotic genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKjsrnP&md5=a538e50feb9333ac3928cab51c98d9c8CAS | 22960324PubMed |
Ansari IK, Walter S, Brennan MJ, Lemmens M, Kessans S, McGahern A, Egan D, Doohan MF (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theoretical and Applied Genetics 114, 927–937.
| Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOltrk%3D&md5=8a423fa269a8ae8c2a18b2f0ebb74705CAS |
Baskaev KK, Buzdin AA (2012) Evolutionary recent insertions of mobile elements and their contribution to the structure of human genome. Zhurnal Obshchei Biologii 73, 3–20. [In Russian]
Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249.
| Spontaneous epigenetic variation in the Arabidopsis thaliana methylome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2jt7bE&md5=6a783ca69e4646303f4889edc08bf3efCAS | 1:CAS:528:DC%2BC3MXhsF2jt7bE&md5=6a783ca69e4646303f4889edc08bf3efCAS | 22057020PubMed |
Beguiristain T, Grandbastien MA, Puigdomènech P, Casacuberta JM (2001) Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology 127, 212–221.
| Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCrtL8%3D&md5=8654609b79d1afde4fe825246869c0c5CAS | 1:CAS:528:DC%2BD3MXmvFCrtL8%3D&md5=8654609b79d1afde4fe825246869c0c5CAS | 11553749PubMed |
Brierley C, Flavell AJ (1990) The retrotransposon Copia controls the relative levels of its gene products post-transcriptionally by differential expression from its two major mRNAs. Nucleic Acids Research 18, 2947–2951.
| The retrotransposon Copia controls the relative levels of its gene products post-transcriptionally by differential expression from its two major mRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslagsrc%3D&md5=458ad920c11575eded81be826d9c013bCAS | 1:CAS:528:DyaK3cXkslagsrc%3D&md5=458ad920c11575eded81be826d9c013bCAS | 2161518PubMed |
Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. The Plant Cell 24, 1242–1255.
| Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmsl2jtLY%3D&md5=9b753ab64ec4129c6a4790055d0b0017CAS | 1:CAS:528:DC%2BC38Xmsl2jtLY%3D&md5=9b753ab64ec4129c6a4790055d0b0017CAS | 22427337PubMed |
Casacuberta JM, Grandbastien M-A (1993) Characterization of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Research 21, 2087–2093.
| Characterization of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Crsr8%3D&md5=3a81555965061e8a0dac6ebb067a94a2CAS | 1:CAS:528:DyaK3sXks1Crsr8%3D&md5=3a81555965061e8a0dac6ebb067a94a2CAS | 8389038PubMed |
Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311, 1–11.
| Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFGjsr4%3D&md5=33ceecfb4b9c2378893d0ef3e59ef450CAS | 1:CAS:528:DC%2BD3sXltFGjsr4%3D&md5=33ceecfb4b9c2378893d0ef3e59ef450CAS | 12853133PubMed |
Chang W, Schulman AH (2008) BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. The Plant Journal 56, 40–50.
| BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ygtbvJ&md5=8f426ebc394e4f2cbbd99ddbd3c76f31CAS | 1:CAS:528:DC%2BD1cXht1ygtbvJ&md5=8f426ebc394e4f2cbbd99ddbd3c76f31CAS | 18547398PubMed |
Chen RD, Yu LX, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Molecular & General Genetics 245, 195–202.
| Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFGlsb4%3D&md5=125a9176c4384a767713a01f0667990aCAS | 1:CAS:528:DyaK2MXjvFGlsb4%3D&md5=125a9176c4384a767713a01f0667990aCAS |
Cheng C, Daigen M, Hirochika H (2006) Epigenetic regulation of the rice retrotransposon Tos17. Molecular Genetics and Genomics 276, 378–390.
| Epigenetic regulation of the rice retrotransposon Tos17.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovF2ltbg%3D&md5=9aa859c1131e93d18d2eea91f2854556CAS | 16821043PubMed |
d’Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. The Plant Journal 34, 95–106.
| Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVaku7Y%3D&md5=fed418b5ed30eefd7102a89595a92969CAS | 12662312PubMed |
Dellaporta SL, Chomet PS, Mottinger JP, Wood JA, Yu SM, Hicks JB (1984) Endogenous transposable element associated with virus infection in maize. Cold Spring Harbor Symposia on Quantitative Biology 49, 321–328.
| Endogenous transposable element associated with virus infection in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtlWrsA%3D%3D&md5=1836cd9653e35d4c5fd90d8f869cad4fCAS | 6099243PubMed |
Dunn CA, Romanish MT, Gutierrez LE, van de Lagemaat LN, Mager DL (2006) Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 366, 335–342.
| Transcription of two human genes from a bidirectional endogenous retrovirus promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFGjsbs%3D&md5=d8bdf4992ad29c0532e6db1573d99586CAS | 16288839PubMed |
Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nature Reviews. Genetics 3, 329–341.
| Plant transposable elements: where genetics meets genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1yhtLw%3D&md5=ebdd0d32bce1e71d9814304768dc2a54CAS | 11988759PubMed |
Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Research 20, 3639–3644.
| Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVClsbc%3D&md5=503998b65b92aff847366eee3c88a002CAS | 1379359PubMed |
Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, Stougaard J, Hirochika H (2010) Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants. PLOS Genetics 6, e1000868
| Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants.Crossref | GoogleScholarGoogle Scholar | 20221264PubMed |
Fukai E, Stougaard J, Hayashi M (2013) Activation of an endogenous retrotransposon associated with epigenetic changes in Lotus japonicus: a tool for functional genomics in legumes. The Plant Genome 6,
| Activation of an endogenous retrotransposon associated with epigenetic changes in Lotus japonicus: a tool for functional genomics in legumes.Crossref | GoogleScholarGoogle Scholar |
Goldsbrough AP, Albrecht H, Stratford R (1993) Salicylic acid inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved among stress-inducible genes. The Plant Journal 3, 563–571.
| Salicylic acid inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved among stress-inducible genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFehtrk%3D&md5=c2846f1d690ec2044aa939f8fe8e4153CAS | 1:CAS:528:DyaK3sXlsFehtrk%3D&md5=c2846f1d690ec2044aa939f8fe8e4153CAS | 8220463PubMed |
Grandbastien M-A (1998) Activation of plant retrotransposons under stress conditions. Trends in Plant Science 3, 181–187.
| Activation of plant retrotransposons under stress conditions.Crossref | GoogleScholarGoogle Scholar |
Grandbastien M-A (2004) Stress activation and genomic impact of plant retrotransposons. Journal de la Societe de Biologie 198, 425–432.
Grandbastien M-A, Lucas H, Mhiri C, Morel J-B, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense response. Genetica 100, 241–252.
| The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslWluw%3D%3D&md5=d30e8f83dc92d889544770d6ee86a371CAS | 9440277PubMed |
Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys M-A, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenetic and Genome Research 110, 229–241.
| Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvFyhtbk%3D&md5=03752d5762e28ba3fcf24a5008125026CAS | 16093677PubMed |
Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vogeli-Lange R, Meins F, Hain R, Penuelas J, Heidenreich B, Langebartels C, Ernst D, Sandermann H (2003) Ozone-induced gene expression occurs via ethylene-dependent and -independent signaling. Plant Molecular Biology 51, 599–607.
| Ozone-induced gene expression occurs via ethylene-dependent and -independent signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFCqtbo%3D&md5=526fc1d128eab96365329170b1b2facbCAS | 12650625PubMed |
Haag JR, Pikaard CS (2011) Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nature Reviews. Molecular Cell Biology 12, 483–492.
| Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1aqt7Y%3D&md5=4945da1f840f20cca8c190d87649e34dCAS | 1:CAS:528:DC%2BC3MXpt1aqt7Y%3D&md5=4945da1f840f20cca8c190d87649e34dCAS | 21779025PubMed |
Hagan CR, Rudin CM (2002) Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. American Journal of Pharmacogenomics 2, 25–35.
| Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyju7w%3D&md5=b447986d3e5dddf35867d8212e9c64b6CAS | 1:CAS:528:DC%2BD38XnvFyju7w%3D&md5=b447986d3e5dddf35867d8212e9c64b6CAS | 12083952PubMed |
Hagan CR, Sheffield RF, Rudin CM (2003) Human Alu elements retrotransposition induced by genotoxic stress. Nature Genetics 35, 219–220.
| Human Alu elements retrotransposition induced by genotoxic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWrt78%3D&md5=c497932886315d0dd4fdf51036e2db56CAS | 1:CAS:528:DC%2BD3sXosFWrt78%3D&md5=c497932886315d0dd4fdf51036e2db56CAS | 14578886PubMed |
Haoudi A, Rachidi M, Kim MH, Champion S, Best-Belpomme M, Maisonhaute C (1997) Developmental expression analysis of the 1731 retrotransposon reveals an enhancement of Gag–Pol frameshifting in males of Drosophila melanogaster. Gene 196, 83–93.
| Developmental expression analysis of the 1731 retrotransposon reveals an enhancement of Gag–Pol frameshifting in males of Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVCrsLc%3D&md5=dc0fcb43a31c6d17a6d6cce42ac86d58CAS | 1:CAS:528:DyaK2sXltVCrsLc%3D&md5=dc0fcb43a31c6d17a6d6cce42ac86d58CAS | 9322744PubMed |
Hart CM, Nagym F, Meins FJ (1993) A 61 bp enhancer element of the tobacco β-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Molecular Biology 21, 121–131.
| A 61 bp enhancer element of the tobacco β-1,3-glucanase B gene interacts with one or more regulated nuclear proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1agt7k%3D&md5=db359299a5b881d04e05286700d65d8eCAS | 1:CAS:528:DyaK3sXhs1agt7k%3D&md5=db359299a5b881d04e05286700d65d8eCAS | 8425042PubMed |
Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biology 5, 225
| The diversity of LTR retrotransposons.Crossref | GoogleScholarGoogle Scholar | 15186483PubMed |
Hirochika H (1995) Activation of plant retrotransposons by stress. In ‘Modification of gene expression and non-Mendelian inheritance’. (Eds K Oono, F Takaiwa) pp. 15–21. (National Institute of Agrobiological Resources: Tsukuba)
Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proceedings of the National Academy of Sciences of the United States of America 93, 7783–7788.
| Retrotransposons of rice involved in mutations induced by tissue culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFSrtrc%3D&md5=ceefa17a36966f0de704ca3e2d69a4e6CAS | 1:CAS:528:DyaK28XksFSrtrc%3D&md5=ceefa17a36966f0de704ca3e2d69a4e6CAS | 8755553PubMed |
Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. The Plant Cell 12, 357–369.
Ikeda K, Nakayashiki H, Takagi M, Tosa Y, Mayama S (2001) Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Molecular Genetics and Genomics 266, 318–325.
| Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVehs74%3D&md5=af5ebd152185058499060de97c1fe668CAS | 1:CAS:528:DC%2BD3MXptVehs74%3D&md5=af5ebd152185058499060de97c1fe668CAS | 11683275PubMed |
Irwin PA, Voytas DF (2001) Expression and processing of proteins encoded by the Saccharomyces retrotransposon Ty5. Journal of Virology 75, 1790–1797.
| Expression and processing of proteins encoded by the Saccharomyces retrotransposon Ty5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVSnsrg%3D&md5=2483d0a0ed0981bdc402fbc6f550a7e4CAS | 1:CAS:528:DC%2BD3MXhtVSnsrg%3D&md5=2483d0a0ed0981bdc402fbc6f550a7e4CAS | 11160677PubMed |
Issa M, Bakr HA, Alzohairy AM, Zeidan I (2012) Gene-Tracer: algorithm tracing genes modification from ancestors through offsprings. International Journal of Computers and Applications 52, 11–14.
| Gene-Tracer: algorithm tracing genes modification from ancestors through offsprings.Crossref | GoogleScholarGoogle Scholar |
Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). The Plant Journal 31, 615–627.
| Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnsl2huro%3D&md5=90279221e2a8b3cf883f0916d5023b8bCAS | 12207651PubMed |
Jensen L, Friis C, Ussery D (1999) Three views of microbial genomes. Research in Microbiology 150, 773–777.
| Three views of microbial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslWmug%3D%3D&md5=c93c73e7468688c334b633a9bb56795fCAS | 1:CAS:528:DC%2BD3cXoslWmug%3D%3D&md5=c93c73e7468688c334b633a9bb56795fCAS | 10673014PubMed |
Jiang B, Lou Q, Wu Z, Zhang W, Wang D, Mbira KG, Weng Y, Chen J (2011) Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride. Plant Molecular Biology 77, 225–233.
| Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride.Crossref | GoogleScholarGoogle Scholar | 21805197PubMed |
Jurka J, Kapitonov V, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Annual Review of Genomics and Human Genetics 8, 241–259.
| Repetitive sequences in complex genomes: structure and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WksrrN&md5=495d06c86012a19041c29059d1202033CAS | 1:CAS:528:DC%2BD2sXht1WksrrN&md5=495d06c86012a19041c29059d1202033CAS | 17506661PubMed |
Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America 97, 6603–6607.
| Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFaju7Y%3D&md5=1402b35b1fdcf4ecedf9dfbd511acc17CAS | 1:CAS:528:DC%2BD3cXktFaju7Y%3D&md5=1402b35b1fdcf4ecedf9dfbd511acc17CAS | 10823912PubMed |
Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7, e40203
| Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVWrs70%3D&md5=bdf05ade4c7144a22bee589b22965fa1CAS | 1:CAS:528:DC%2BC38XpvVWrs70%3D&md5=bdf05ade4c7144a22bee589b22965fa1CAS | 22761959PubMed |
Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659.
Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics 33, 102–106.
| Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVeqs7s%3D&md5=55668d0e8ed0191f64e38fbe95d2699bCAS | 1:CAS:528:DC%2BD38XpvVeqs7s%3D&md5=55668d0e8ed0191f64e38fbe95d2699bCAS | 12483211PubMed |
Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends in Ecology & Evolution 15, 95–99.
| Transposable elements and host genome evolution.Crossref | GoogleScholarGoogle Scholar |
Ko CH, Brendel V, Taylor RD, Walbot V (1998) U-richness is a defining feature of plant introns and may function as an intron recognition signal in maize. Plant Molecular Biology 36, 573–583.
| U-richness is a defining feature of plant introns and may function as an intron recognition signal in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1eltLY%3D&md5=099283b296215979cd9f3285f97392c8CAS | 1:CAS:528:DyaK1cXht1eltLY%3D&md5=099283b296215979cd9f3285f97392c8CAS | 9484452PubMed |
Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304, 982
| Retrotransposon-induced mutations in grape skin color.Crossref | GoogleScholarGoogle Scholar | 15143274PubMed |
Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annual Review of Genetics 33, 479–532.
| Plant retrotransposons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVSms7k%3D&md5=f24384f1161067612dcac03d67936868CAS | 10690416PubMed |
La H, Ding B, Mishra GP, Zhou B, Yang H, del Rosario Bellizzi M, Chen S, Meyers BC, Peng Z, Zhu J-K, Wang G-L (2011) A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proceedings of the National Academy of Sciences of the United States of America 108, 15498–15503.
| A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KisLjJ&md5=757df3443e2f892ee2af21ef2a7d4f13CAS | 21896764PubMed |
Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews. Genetics 11, 204–220.
| Establishing, maintaining and modifying DNA methylation patterns in plants and animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFCrsLk%3D&md5=7a43607f6092de1cdbc32ddeb60e8461CAS | 20142834PubMed |
Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 97, 7376–7381.
| Transposon diversity in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVKiu7o%3D&md5=49f5493f90b306b4f73c4a2f49668740CAS | 10861007PubMed |
Lesage P, Todeschini AL (2005) Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenetic and Genome Research 110, 70–90.
| Happy together: the life and times of Ty retrotransposons and their hosts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvFyht7w%3D&md5=9c60b130c6d1272cf74f431e9a830e37CAS | 16093660PubMed |
Lippman Z, Gendrel A-V, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476.
| Role of transposable elements in heterochromatin and epigenetic control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVaksLk%3D&md5=9dab4f9d9d0138c7f564c66c9f07118bCAS | 1:CAS:528:DC%2BD2cXlvVaksLk%3D&md5=9dab4f9d9d0138c7f564c66c9f07118bCAS | 15269773PubMed |
Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Liu B (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theoretical and Applied Genetics 109, 200–209.
| Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslKns7o%3D&md5=dcb5ae4fe7c1b2f749d6416a4d6347a1CAS | 15071728PubMed |
Long L, Ou X, Liu J, Lin X, Sheng L, Liu B (2009) The spaceflight environment can induce transpositional activation of multiple endogenous transposable elements in a genotype-dependent manner in rice. Journal of Plant Physiology 166, 2035–2045.
| The spaceflight environment can induce transpositional activation of multiple endogenous transposable elements in a genotype-dependent manner in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOlt7bP&md5=023668b8e283f405947aaadd7a7502fcCAS | 19628300PubMed |
Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J (2005) LORE1, an active low-copy-number TY3-Gypsy retrotransposon family in the model legume Lotus japonicus. Plant J. 44, 372–381.
| LORE1, an active low-copy-number TY3-Gypsy retrotransposon family in the model legume Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1alsbnN&md5=a1ab91f8f5f229bd6628795eb8182d91CAS | 16236148PubMed |
Manninen I, Schulman AH (1993) BARE-1, a Copia-like retroelement in barley (Hordeum vulgare L.). Plant Molecular Biology 22, 829–846.
| BARE-1, a Copia-like retroelement in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1CisLc%3D&md5=b7ee4d3356496433a73c37c7f386dbdbCAS | 7689350PubMed |
Mansour A (2007) Epigenetic activation of genomic retrotransposon. Journal of Cell and Molecular Biology 6, 99–107.
Mansour A (2008) Utilization of genomic retrotransposon as cladistic molecular markers. Journal of Cell and Molecular Biology 7, 17–28.
Mansour A (2009) Water deficit induction of Copia and Gypsy genomic retrotransposons. Plant Stress 3, 33–39.
Matsuda E, Garfinkel DJ (2009) Posttranslational interference of Ty1 retrotransposition by antisense RNAs. Proceedings of the National Academy of Sciences of the United States of America 106, 15657–15662.
| Posttranslational interference of Ty1 retrotransposition by antisense RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyjsLjI&md5=5b51d1bf5a242fd1761cfffbf674e8a4CAS | 19721006PubMed |
McClintock B (1984) The significance of responses of the genome to challenge. Science 226, 792–801.
| The significance of responses of the genome to challenge.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7gvV2juw%3D%3D&md5=7df31525293214b653db379f32b9ae56CAS | 15739260PubMed |
Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien M-A (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. The Plant Journal 28, 159–168.
| The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovV2ks70%3D&md5=a81f1d349b0f06548c2f8f02563cd219CAS | 11722759PubMed |
Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461, 427–430.
| Selective epigenetic control of retrotransposition in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2gsbzI&md5=7e302d42d17fc7d3c1990f9452004f23CAS | 19734882PubMed |
Nellaker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H (2006) Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 6, 30–44.
Novikov A, Smyshlyaev G, Novikova O (2012) Evolutionary history of LTR retrotransposon chromodomains in plants. International Journal of Plant Genomics 2012, Article ID 874743
| Evolutionary history of LTR retrotransposon chromodomains in plants.Crossref | GoogleScholarGoogle Scholar |
Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C, Thomas EN, Slotkin RK (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiology 162, 116–131.
| The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVWksrg%3D&md5=18a3830e85c23a70b287f7ff5c5542eeCAS | 1:CAS:528:DC%2BC3sXnvVWksrg%3D&md5=18a3830e85c23a70b287f7ff5c5542eeCAS | 23542151PubMed |
Okamoto H, Hirohiko H (2001) Silencing of transposable elements in plants. Trends in Plant Science 6, 527–534.
| Silencing of transposable elements in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGksLY%3D&md5=3b5cb42c80f141c1262a270e48414f96CAS | 1:CAS:528:DC%2BD3MXovFGksLY%3D&md5=3b5cb42c80f141c1262a270e48414f96CAS | 11701381PubMed |
Pouteau S, Huttner E, Grandbastien M-A, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. The EMBO Journal 10, 1911–1918.
Ramallo E, Kalendar R, Schulman AH, Martinez-Izquierdo JA (2008) Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology 66, 137–150.
| Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWqsbk%3D&md5=539eaac933d6deed553155a6cd4ee2fcCAS | 1:CAS:528:DC%2BD1cXhsVWqsbk%3D&md5=539eaac933d6deed553155a6cd4ee2fcCAS | 18034313PubMed |
Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annual Review of Plant Biology 58, 267–294.
| Alternative splicing of pre-messenger RNAs in plants in the genomic era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVahsL8%3D&md5=e35a467b840f43a76e789f604d7ca4feCAS | 1:CAS:528:DC%2BD2sXnsVahsL8%3D&md5=e35a467b840f43a76e789f604d7ca4feCAS |
Sablowski RWM, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. The EMBO Journal 13, 128–137.
Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97, 381–388.
| Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1aku7rO&md5=acc2aee94d9a782d633274d11233358aCAS | 1:CAS:528:DC%2BD28Xht1aku7rO&md5=acc2aee94d9a782d633274d11233358aCAS | 16985508PubMed |
Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Reports 26, 1861–1868.
| The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVaksbjF&md5=dd230c590dc092f782986eaac79e733aCAS | 1:CAS:528:DC%2BD2sXhtVaksbjF&md5=dd230c590dc092f782986eaac79e733aCAS | 17583815PubMed |
Sánchez-Luque F, López MC, Macias F, Alonso C, Thomas MC (2012) Pr77 and L1TcRz: a dual system within the 5′-end of L1Tc retrotransposon, internal promoter and HDV-like ribozyme. Mobile Genetic Elements 2, 1–7.
| Pr77 and L1TcRz: a dual system within the 5′-end of L1Tc retrotransposon, internal promoter and HDV-like ribozyme.Crossref | GoogleScholarGoogle Scholar | 22754746PubMed |
Seki H, Ichinose Y, Ito M, Shiraishi T, Yamada T (1997) Combined effects of multiple cis-acting elements in elicitor-mediated activation of PSCHS1 gene. Plant & Cell Physiology 38, 96–100.
| Combined effects of multiple cis-acting elements in elicitor-mediated activation of PSCHS1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFWltg%3D%3D&md5=48cb3b6533cbed4394f4d6889ff8db42CAS |
Sha AH, Huang JB, Zhang DP (2005) Relationship of activation of Tos17 and rice adult plant resistance to bacterial blight. Yi Chuan 27, 181–184.
Shi X, Seluanov A, Gorbunova V (2007) Cell divisions are required for L1 retrotransposition. Molecular and Cellular Biology 27, 1264–1270.
| Cell divisions are required for L1 retrotransposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1amsr8%3D&md5=43cf84b524a0c8c03a128c5f1d1b3257CAS | 17145770PubMed |
Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6, 410–417.
| Regulatory network of gene expression in the drought and cold stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVKhsb8%3D&md5=a0f463b864fbf9b83a175497b1c273ccCAS | 1:CAS:528:DC%2BD3sXntVKhsb8%3D&md5=a0f463b864fbf9b83a175497b1c273ccCAS | 12972040PubMed |
Suoniemi A, Anamthawat-Jónsson K, Arna T, Schulman AH (1996a) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Molecular Biology 30, 1321–1329.
| Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1KisLc%3D&md5=abeeb352a44fe64adca210f895cbd0c8CAS | 1:CAS:528:DyaK28Xks1KisLc%3D&md5=abeeb352a44fe64adca210f895cbd0c8CAS | 8704140PubMed |
Suoniemi A, Narvanto A, Schulman AH (1996b) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Molecular Biology 31, 295–306.
| The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFGltbY%3D&md5=e74a8c7ea756399d886ecc162e230ff5CAS | 8756594PubMed |
Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. The Plant Journal 13, 699–705.
| Gypsy-like retrotransposons are widespread in the plant kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVKgtbo%3D&md5=9194c0f64010853bd399d606f2f86c16CAS | 9681012PubMed |
Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. The Plant Journal 18, 383–393.
| A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlKgt7s%3D&md5=94d286b0486e9cd1b56ab99b5f0387e3CAS | 10406122PubMed |
Takeda S, Sugimoto K, Kakutani T, Hirochika H (2001) Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. The Plant Journal 28, 307–317.
| Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Kjur8%3D&md5=45982b80f89a3b1e5d74dc7560717236CAS | 11722773PubMed |
Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene 390, 166–174.
| Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitV2qsbg%3D&md5=04ba49f534612e3cd6be8704eddec10aCAS | 1:CAS:528:DC%2BD2sXitV2qsbg%3D&md5=04ba49f534612e3cd6be8704eddec10aCAS | 17107763PubMed |
Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzalez E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiology 138, 2075–2086.
| Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12lsL4%3D&md5=493cbc16b449b21190f191a5baec1367CAS | 1:CAS:528:DC%2BD2MXps12lsL4%3D&md5=493cbc16b449b21190f191a5baec1367CAS | 16040666PubMed |
Todeschini AL, Morillon A, Springer M, Lesage P (2005) Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Molecular and Cellular Biology 25, 7459–7472.
| Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFKhs7k%3D&md5=2a2f1e065abda1460c8fd4f541922b99CAS | 1:CAS:528:DC%2BD2MXpsFKhs7k%3D&md5=2a2f1e065abda1460c8fd4f541922b99CAS | 16107695PubMed |
Vernhettes S, Grandbastien M-A, Casacuberta JM (1997) In vivo characterization of transcriptional regulatory sequences involved in the defense-associated expression of the tobacco retrotransposon Tnt1. Plant Molecular Biology 35, 673–679.
| In vivo characterization of transcriptional regulatory sequences involved in the defense-associated expression of the tobacco retrotransposon Tnt1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVertb8%3D&md5=de2bdaaa7b8b4b118ef19d98c723b100CAS | 1:CAS:528:DyaK2sXmvVertb8%3D&md5=de2bdaaa7b8b4b118ef19d98c723b100CAS | 9349289PubMed |
Vicient CM, Kalendar R, Anamthawat-Jonsson K, Suoniemi A, Schulman AH (1999a) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107, 53–63.
| Structure, functionality, and evolution of the BARE-1 retrotransposon of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVCiurc%3D&md5=0e986088c60d8c91e3a1a99cb5968532CAS | 1:CAS:528:DC%2BD3cXmtVCiurc%3D&md5=0e986088c60d8c91e3a1a99cb5968532CAS | 10952197PubMed |
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999b) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. The Plant Cell 11, 1769–1784.
Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. Journal of Molecular Evolution 61, 275–291.
| Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVamtr%2FM&md5=633419ecee0915eadd78a9f3182b80a7CAS | 1:CAS:528:DC%2BD2MXhtVamtr%2FM&md5=633419ecee0915eadd78a9f3182b80a7CAS | 16034651PubMed |
Voytas DF, Boeke JD (1993) Yeast retrotransposons and tRNAs. Trends in Genetics 9, 421–427.
| Yeast retrotransposons and tRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXnt12ktw%3D%3D&md5=ee344eb029dff90e8b91d710b82b498dCAS | 1:CAS:528:DyaK2cXnt12ktw%3D%3D&md5=ee344eb029dff90e8b91d710b82b498dCAS | 8122309PubMed |
Voytas DF, Cummings MP, Konieczny AK, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proceedings of the National Academy of Sciences of the United States of America 89, 7124–7128.
| Copia-like retrotransposons are ubiquitous among plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1ahsL0%3D&md5=eb2fea1b72f68961f647866c3eac02b0CAS | 1:CAS:528:DyaK3sXkt1ahsL0%3D&md5=eb2fea1b72f68961f647866c3eac02b0CAS | 1379734PubMed |
Wessler SR (1996) Plant retrotransposons: turned on by stress. Current Biology 6, 959–961.
| Plant retrotransposons: turned on by stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvF2kt78%3D&md5=d082e1ff3fbb59af4b783caedd6b4d2dCAS | 8805314PubMed |
White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for Copia-like elements in the evolution of gene structure and expression. Proceedings of the National Academy of Sciences of the United States of America 91, 11792–11796.
| Retrotransposons in the flanking regions of normal plant genes: a role for Copia-like elements in the evolution of gene structure and expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFyqsLY%3D&md5=9164605508caa4a65ce32dfecc2afa76CAS | 1:CAS:528:DyaK2MXisFyqsLY%3D&md5=9164605508caa4a65ce32dfecc2afa76CAS | 7991537PubMed |
Wicker T, Keller B (2007) Genome-wide comparative analysis of Copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual Copia families. Genome Research 17, 1072–1081.
| Genome-wide comparative analysis of Copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual Copia families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVWkurk%3D&md5=940dcf1ae8fb275cbda4ca436dbd7888CAS | 1:CAS:528:DC%2BD2sXnvVWkurk%3D&md5=940dcf1ae8fb275cbda4ca436dbd7888CAS | 17556529PubMed |
Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88.
| Evolutionary changes in cis and trans gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1CqtLc%3D&md5=8ef9bb76f115b77a676ff64cb42a02ceCAS | 1:CAS:528:DC%2BD2cXlt1CqtLc%3D&md5=8ef9bb76f115b77a676ff64cb42a02ceCAS | 15229602PubMed |
Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO Journal 9, 3353–3362.