Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Review on shape formation in epidermal pavement cells of the Arabidopsis leaf

Eveline Jacques A B , Jean-Pierre Verbelen A and Kris Vissenberg A C
+ Author Affiliations
- Author Affiliations

A Department of Biology, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

B Present address: Department of Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052 Ghent, Belgium.

C Corresponding author. Email: kris.vissenberg@uantwerp.be

Functional Plant Biology 41(9) 914-921 https://doi.org/10.1071/FP13338
Submitted: 22 November 2013  Accepted: 22 April 2014   Published: 10 June 2014

Abstract

Epidermal pavement cells appear with a fascinating irregular wavy shape in the Arabidopsis thaliana leaf. This review addresses the questions of why this particular shape is produced during leaf development and how this is accomplished. To answer the first question most probably waviness offers some biomechanical benefits over other organisations. Different positions of lobe-formation are therefore explored and discussed. At the moment, however, no hard evidence that favours any one morphology is available. The latter question comprises the biomechanical accomplishment of shape and refers to the cell wall and cytoskeletal involvement herein. A current model for pavement cell development is discussed but remaining questions and pitfalls are put forward. Moreover, an overview of the genetic and biochemical regulatory pathways that are described up to date in the literature is presented.

Additional keywords: Arabidopsis thaliana, cell shape formation, cell wall, cytoskeleton, leaf development, pavement cell.


References

Baburaj EG, Starikov D, Evans J, Shafeev GA, Bensaoula A (2007) Enhancement of adhesive joint strength by laser surface modification. International Journal of Adhesion and Adhesives 27, 268–276.
Enhancement of adhesive joint strength by laser surface modification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ortb4%3D&md5=0830e84b0d2abe37d3b3dcc2fff1ee9dCAS |

Bannigan A, Baskin TI (2005) Directional cell expansion – turning toward actin. Current Opinion in Plant Biology 8, 619–624.
Directional cell expansion – turning toward actin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFers7jL&md5=a55debd76007eabc3826b973538aef79CAS | 16181803PubMed |

Baskin TI, Beemster GT, Judy-March JE, Marga F (2004) Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiology 135, 2279–2290.
Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1GgsLY%3D&md5=4af4b60f449c019116a57e1e60c5b420CAS | 15299138PubMed |

Basu D, El-Assal SED, Le J, Mallery EL, Szymanski DB (2004) Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131, 4345–4355.
Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVyisrg%3D&md5=dd3ef0bf80078db9b0690be00658424fCAS | 15294869PubMed |

Basu D, Le J, El-Assal SED, Huang S, Zhang C, Mallery EL, Koliantz G, Staiger CJ, Szymanski DB (2005) DISTORTED3/ SCAR2 is a putative Arabidopsis WAVE complex subunit that activates the ARP2/3 complex and is required for epidermal morphogenesis. The Plant Cell 17, 502–524.
DISTORTED3/ SCAR2 is a putative Arabidopsis WAVE complex subunit that activates the ARP2/3 complex and is required for epidermal morphogenesis.Crossref | GoogleScholarGoogle Scholar | 15659634PubMed |

Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB (2008) A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proceedings of the National Academy of Sciences of the United States of America 105, 4044–4049.
A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1OltLc%3D&md5=1b3b5a0c57bb617cae3b8c7f8ae0f225CAS | 18308939PubMed |

Brembu T, Winge P, Seem M, Bones AM (2004) NAPP and PIRP encode subunits of a putative Wave regulatory protein complex involved in plant morphogenesis. The Plant Cell 22, 1006–1018.

Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, Persson S (2012) POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. The Plant Cell 24, 163–177.
POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVOksr0%3D&md5=7b046e7f44089fe14d2d9be159ef8f55CAS | 22294619PubMed |

Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiology 146, 97–107.
Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCms7Y%3D&md5=30370997dfbeab26da146c8b071beb25CAS | 17981987PubMed |

Cosgrove DJ (2005) Growth of the plant cell wall. Nature Reviews. Molecular Cell Biology 6, 850–861.
Growth of the plant cell wall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKlsL3M&md5=e89999d947ca0deacc2ceca0fcfdb79dCAS | 16261190PubMed |

Craddock C, Lavagi I, Yang Z (2012) New insights into Rho signaling from plant ROP/Rac GTPases. Trends in Cell Biology 22, 492–501.
New insights into Rho signaling from plant ROP/Rac GTPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWqtLrF&md5=2b005d16e829ce9954a7033c83121a74CAS | 22795444PubMed |

Crowell EF, Gonneau M, Vernhettes S, Höfte H (2010) Regulation of anisotropic cell expansion in higher plants. Comptes Rendus Biologies 333, 320–324.
Regulation of anisotropic cell expansion in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlCqsL8%3D&md5=542749dc3d4e1f936238df63d956fcb0CAS | 20371106PubMed |

Cutler DF, Botha T, Stevenson DW (2008) The leaf. In ‘Plant anatomy: an applied approach’. pp. 70–121. (Blackwell Publishing: Hoboken, NJ)

Deeks MJ, Kaloriti D, Davies B, Malho R, Hussey PJ (2004) Arabidopsis NAP1 is essential for ARP2/3-dependent trichome morphogenesis. Current Biology 14, 1410–1414.
Arabidopsis NAP1 is essential for ARP2/3-dependent trichome morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVKmsrc%3D&md5=61ceff952459a4bad7b761f01e305ebaCAS | 15296761PubMed |

El-Assal SE, Le J, Basu D, Mallery EL, Szymanski DB (2004) Arabidopsis GNARLED encodes a NAP125 homologue that positively regulates ARP2/3. Current Biology 14, 1405–1409.
Arabidopsis GNARLED encodes a NAP125 homologue that positively regulates ARP2/3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVKmsrY%3D&md5=cbd5e20e0c65f352b8ebb8319bf0297bCAS |

Emons AM, Mulder BM (1998) The making of the architecture of the plant cell wall: how cells exploit geometry. Proceedings of the National Academy of Sciences of the United States of America 95, 7215–7219.
The making of the architecture of the plant cell wall: how cells exploit geometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslymt7s%3D&md5=cade046fa6fb22bc3dc42978c95befa2CAS | 9618565PubMed |

Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordial by the cell wall protein expansin. Science 276, 1415–1418.
Induction of leaf primordial by the cell wall protein expansin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFOjs70%3D&md5=8dd7a09c7f121394eb10104568e45a0dCAS |

Frank MJ, Cartwright HN, Smith LG (2003) Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130, 753–762.
Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslWjtbg%3D&md5=ec18e0a9bb6862cbd0f80e001726df66CAS | 12506005PubMed |

Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. The Plant Cell 14, 777–794.
The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWksbs%3D&md5=00ec3112e8c0a4641d07c93c2462a42eCAS | 11971134PubMed |

Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120, 687–700.
Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yhsbc%3D&md5=3cf8b041d267f70b7d5e7461a4604851CAS | 15766531PubMed |

Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signalling pathway controls cortical microtubule ordering and cell expansion. Current Biology 19, 1827–1832.
A ROP GTPase signalling pathway controls cortical microtubule ordering and cell expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVajsbfN&md5=0a5e2bd3ff381c118d880fe664edf8e2CAS | 19818614PubMed |

Glover BJ (2000) Differentiation in plant epidermal cells. Journal of Experimental Botany 51, 497–505.
Differentiation in plant epidermal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Knu7Y%3D&md5=698fade993cf8aae9ca30ba41dadeaa0CAS | 10938806PubMed |

Gómez LD, Baud S, Gilday A, Li Y, Graham A (2006) Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. The Plant Journal 46, 69–84.
Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation.Crossref | GoogleScholarGoogle Scholar | 16553896PubMed |

Guo H, Li L, Aluru M, Aluru S, Yin Y (2013) Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology 16, 545–553.
Mechanisms and networks for brassinosteroid regulated gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCltbjE&md5=03b385d689b03eaec3f8268fc2e79b67CAS | 23993372PubMed |

Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biology 11, 797–806.
Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvF2rsbg%3D&md5=85910bf6880c026e6c54e9fe5da66735CAS | 19525940PubMed |

Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen JP, Jansen MAK, Vissenberg K (2010) UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. Journal of Experimental Botany 61, 4339–4349.
UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtLnE&md5=4b69728682333c779e798865d5d78f92CAS | 20702567PubMed |

Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. The Plant Journal 36, 565–575.
Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVKr&md5=ae3adbe4bc8aad5ec64d9c16f9228310CAS | 14617086PubMed |

Javelle M, Vernoud V, Rogowsky PM, Ingram GC (2011) Epidermis: the formation and functions of a fundamental plant tissue. New Phytologist 189, 17–39.
Epidermis: the formation and functions of a fundamental plant tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlGhtA%3D%3D&md5=9a32907c691ec4e47f9d9b9f5cecbbb0CAS | 21054411PubMed |

Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytoshrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes & Development 12, 2381–2391.
The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytoshrome P-450 family that is required for the regulated polar elongation of leaf cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlaltLk%3D&md5=199998f4f33b72cf99c63b607da8be2dCAS |

Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal 21, 1267–1279.
The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVKntLs%3D&md5=d87f06ddf253d45499d0a7eaa1f43a3bCAS | 11889033PubMed |

Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. The Plant Journal 36, 94–104.
The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos12mt70%3D&md5=0fc47ef0780bc4e9a1d45a9b3da72581CAS | 12974814PubMed |

Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal 41, 710–721.
CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWitbw%3D&md5=8e1f66f26fe2558be81581feb599f663CAS | 15703058PubMed |

Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Annals of Botany 101, 615–621.
The growing outer epidermal wall: design and physiological role of a composite structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Citr0%3D&md5=2d49710f00f3e4abccc5526bf680fe56CAS | 18258808PubMed |

Le J, Mallery EL, Zhang C, Brankle S, Szymanski DB (2006) Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex that selectively stabilizes the Arp2/3 activator SCAR2. Current Biology 16, 895–901.
Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex that selectively stabilizes the Arp2/3 activator SCAR2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFamurY%3D&md5=9f455642069c44b702a46b67343af127CAS | 16584883PubMed |

Lee GY, Cheung K, Chang W, Lee LP (2000) Mechanical interlocking with precisely controlled nano- and microscale geometries for implantable microdevices. In’ Proceedings of the 1st annual international IEEE-EMBS special topic conference in microtechnologies in medicine and biology’. Available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=893727 [Verified 30 April 2014]

Li H, Xu T, Lin D, Wen M, Xie M, Duclercq J, Bielach A, Kim J, Reddy GV, Zuo J, Benkova E, Friml J, Guo H, Yang Z (2013) Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell Research 23, 290–299.
Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVCms78%3D&md5=da01ddbfc1653eb2a0a3967884038866CAS | 23090432PubMed |

Maris A, Kaewthai N, Eklöf JM, Miller JG, Brumer H, Fry SC, Verbelen J-P, Vissenberg K (2011) Characterization of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis reveals specific enzymatic properties. Journal of Experimental Botany 62, 261–271.
Characterization of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis reveals specific enzymatic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamurfI&md5=637534bea657667659d077774c93c417CAS | 20732879PubMed |

Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der Straeten D, Lorences EP, Mellerowicz EJ, Verbelen JP, Vissenberg K (2013) Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. Journal of Experimental Botany 64, 2481–2497.
Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvV2ntb8%3D&md5=c00fcadc8cd5780f1511f83569577624CAS | 23585673PubMed |

Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biology 10, e1001299
ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Gjs7k%3D&md5=d8a95e0fdd7fc0d7c633f405747da454CAS | 22509133PubMed |

Nelissen H, Blarke JH, De Block M, De Block S, Vanderhaeghen R, Zielinski RE, Dyer T, Lust S, Inze D, Van Lijsebettens M (2003) DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants. The Plant Cell 15, 639–654.
DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVektLo%3D&md5=bc50e332babaa02162aa47db030476ddCAS | 12615938PubMed |

Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytologist 143, 19–31.
A mechanical perspective on foliage leaf form and function.Crossref | GoogleScholarGoogle Scholar |

Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In ‘The expanding cell. Plant cell monographs. Vol. 5’. (Eds JP Verbelen, K Vissenberg) pp.89–116. (Springer: Berlin)

Panteris E, Galatis B (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytologist 167, 721–732.
The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGisbfL&md5=e3e11c2610b52e076ea835563201fc78CAS | 16101909PubMed |

Panteris E, Apostolakos P, Galatis B (1993) Microtubules and morphogenesis in ordinary epidermal cells of Vigna sinensis leaves. Protoplasma 174, 91–100.
Microtubules and morphogenesis in ordinary epidermal cells of Vigna sinensis leaves.Crossref | GoogleScholarGoogle Scholar |

Panteris E, Apostolakos P, Galatis B (1994) Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytologist 127, 771–780.
Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism.Crossref | GoogleScholarGoogle Scholar |

Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495.
Visualization of cellulose synthase demonstrates functional association with microtubules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlGlt70%3D&md5=1dc2ed093943dc53dee3e36e1095b073CAS | 16627697PubMed |

Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. The Plant Cell 14, 101–118.
The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1SrsbY%3D&md5=412594573ebb103a7788481d0c8033f6CAS | 11826302PubMed |

Smith LG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annual Review of Cell and Developmental Biology 21, 271–295.
Spatial control of cell expansion by the plant cytoskeleton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlektbrJ&md5=4defae31bc716d5a5e1c011952cac249CAS | 16212496PubMed |

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211.
Toward a systems approach to understanding plant cell walls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSjtrvO&md5=86d179a7ed6ad22772b16f40201ebdb2CAS | 15618507PubMed |

Sugimoto K, Himmelspach R, Williamson RE, Wasteneys GO (2003) Mutation or drug-dependant microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. The Plant Cell 15, 1414–1429.
Mutation or drug-dependant microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVektrs%3D&md5=3dffb8483dd1667d63e2e82ffa506542CAS | 12782733PubMed |

Sun Y, Fan X-Y, Cao D-M, Tang W, He K, Zhu J-Y, He J-X, Bai M-Y, Zhu S, Oh E, Patil S, Kim T-W, Ji H, Wong WH, Rhee SY, Wang Z-Y (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19, 765–777.
Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsValsLnK&md5=5ac605f374152ac8492e170a19142d44CAS | 21074725PubMed |

Suslov D, Verbelen J-P, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. Journal of Experimental Botany 60, 4175–4187.
Onion epidermis as a new model to study the control of growth anisotropy in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WqtLjL&md5=bc3ab50e81f34ce55540ba540106c682CAS | 19684107PubMed |

Thompson DS (2005) How do cell walls regulate plant growth? Journal of Experimental Botany 56, 2275–2285.
How do cell walls regulate plant growth?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVahtLrF&md5=1cdef99665dbf782aa59322c36beb6b8CAS | 16061505PubMed |

Van Sandt V, Suslov D, Verbelen J-P, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Annals of Botany 100, 1467–1473.
Xyloglucan endotransglucosylase activity loosens a plant cell wall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKis7k%3D&md5=0fa9f987c83cd3543da94eb7f0319d56CAS | 17916584PubMed |

Vissenberg K, Martinez-Vilchez IM, Verbelen J-P, Miller JG, Fry SC (2000) In vivo colocalisation of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. The Plant Cell 12, 1229–1237.
In vivo colocalisation of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslygtb0%3D&md5=c7586379a81915828fce05e984698d8eCAS | 10899986PubMed |

Vissenberg K, Fry SC, Verbelen J-P (2001) Root hair initiation is coupled to a highly localized increaze of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiology 127, 1125–1135.
Root hair initiation is coupled to a highly localized increaze of xyloglucan endotransglycosylase action in Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kmsb8%3D&md5=4d75d8e6ab3542ae7239342f7eef8883CAS | 11706192PubMed |

Vissenberg K, Van Sandt V, Fry SC, Verbelen J-P (2003) Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays. Journal of Experimental Botany 54, 335–344.
Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlOiu7k%3D&md5=b70a2d57a81fc5702db4af272a51dcddCAS | 12493861PubMed |

Wasteneys GO, Galway ME (2003) Remodelling the cytoskeleton for growth and form: an overview with some new views. Annual Review of Plant Biology 54, 691–722.
Remodelling the cytoskeleton for growth and form: an overview with some new views.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSns7w%3D&md5=72808c6e39d0c5ff60929536d72c97bbCAS | 14503008PubMed |

Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing plant cell walls. Journal of Microscopy 188, 51–61.
Freeze shattering: a simple and effective method for permeabilizing plant cell walls.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FjsFGjug%3D%3D&md5=62557c8cb0df6df277959f3a9a0e4f30CAS | 9369020PubMed |

Watson RW (1942) The effect of cuticular hardening on the form of epidermal cells. New Phytologist 41, 223–229.
The effect of cuticular hardening on the form of epidermal cells.Crossref | GoogleScholarGoogle Scholar |

Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411, 610–613.
MOR1 is essential for organizing cortical microtubules in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVSgsr4%3D&md5=7f1e6a8a628b85298e3b6f6576ce7e90CAS | 11385579PubMed |

Xu T, Wen M, Nagawa S, Fu Y, Chen J-G, Wu M-J, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and Rho GTPase-bound auxin signalling controls cellular interdigitation in Arabidopsis. Cell 143, 99–110.
Cell surface- and Rho GTPase-bound auxin signalling controls cellular interdigitation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cmu7rN&md5=80217cf7ab4b7ae6b7e62e6b62899f4fCAS | 20887895PubMed |

Xu T, Nagawa S, Yang Z (2011) Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells. Small GTPases 2, 227–232.
Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells.Crossref | GoogleScholarGoogle Scholar | 22145096PubMed |

Yanagisawa M, Zhang C, Szymanski DB (2013) ARP2/3-dependent growth in the plant kingdom: SCARs for life. Frontiers in Plant Science 4,
ARP2/3-dependent growth in the plant kingdom: SCARs for life.Crossref | GoogleScholarGoogle Scholar | 23802001PubMed |

Zhang X, Dyachok J, Krishnukumar S, Smith LG, Oppenheimer DG (2005) IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein 2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. The Plant Cell 17, 2314–2326.
IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein 2/3 complex activator Scar/WAVE that regulates actin and microtubule organization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFGjsLk%3D&md5=c4e2211d18a1438d7911ff1173b23e32CAS | 16006582PubMed |

Zhang C, Eileen L, Schlueter J, Huang S, Fan Y, Brankle S, Staiger CJ, Szymanski DB (2008) Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. The Plant Cell 20, 995–1011.
Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVeksbY%3D&md5=f613630053387fdfcaad79b3bbc04457CAS | 18424615PubMed |

Zhang C, Kotchoni SO, Samuels AL, Szymanski DB (2010) SPIKE1 signals originate from and assemble specialized domains of the endoplasmic reticulum. Current Biology 20, 2144–2149.
SPIKE1 signals originate from and assemble specialized domains of the endoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGhtLfJ&md5=d269470e6250840cf1d36abfa7330e35CAS | 21109438PubMed |

Zhang C, Halsey LE, Szymanski DB (2011) The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biology 11, 27
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.Crossref | GoogleScholarGoogle Scholar | 21284861PubMed |

Zhang C, Mallery E, Reagan S, Boyko VP, Kotchni SO, Szymanski DB (2013a) The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiology 162, 689–706.
The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Oru7g%3D&md5=85e17ab686fe74130b58c8ff6b252051CAS | 23613272PubMed |

Zhang C, Mallery EL, Szymanski DB (2013b) ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Frontiers in Plant Science 4, 238
ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions.Crossref | GoogleScholarGoogle Scholar | 23874346PubMed |