Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Two Arabidopsis thaliana dihydrodipicolinate synthases, DHDPS1 and DHDPS2, are unequally redundant

Susan Jones-Held A , Luciana Pimenta Ambrozevicius A C , Michael Campbell B , Bradley Drumheller B , Emily Harrington B and Thomas Leustek A D
+ Author Affiliations
- Author Affiliations

A Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA.

B School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA.

C Present address: Brazilian Ministry of Agriculture, Livestock and Food Supply, Viçosa 57700, Brazil.

D Corresponding author. Email: leustek@aesop.rutgers.edu

Functional Plant Biology 39(12) 1058-1067 https://doi.org/10.1071/FP12169
Submitted: 7 June 2012  Accepted: 14 August 2012   Published: 1 October 2012

Abstract

In Arabidopsis thalinana (L.) Heynh., DHDPS1 and DHDPS2 encode orthologous dihydrodipicolinate synthases (DHDPS), the first enzyme of the lysine (Lys) biosynthesis pathway. A TDNA insertion mutant of dhdps2 was previously reported to be viable and to accumulate free threonine (Thr). Analysis of additional TDNA insertion lines showed that dhdps1 and dhdps2 mutants are both viable and that whereas dhdps2 mutants accumulate Thr, dhdps1 plants do not. Thr-accumulation was complemented by heterologous expression of Escherichia coli DapA, indicating that the phenotype is due to reduced DHDPS activity in dhdps2. DHDPS1 contributes ~30% towards the total DHDPS activity in leaves of young plants and DHDPS2 contributes 70%; therefore, the threshold of activity resulting in Thr accumulation lies within this narrow range. dhdps1dhdps2 double mutants could not be isolated, even after exogenous feeding with Lys. Segregation analysis indicated that gametes lacking functional DHDPS genes are defective, as are embryos. Plants carrying only a single DHDPS2 gene do not accumulate Thr, but they show a gametophytic defect that is partially rescued by Lys application. Despite the accumulation of Thr, dhdps2 seedlings are no more sensitive than wild-type plants to growth inhibition by Lys or the Lys precursor diaminopimelate. They also are not rescued by methionine at growth-inhibitory Lys concentrations. Exogenous application of Lys and methionine to dhdps2 mutants did not reduce the accumulation of Thr.

Additional keywords: DHDPS, diaminopimelate, lysine.


References

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.
Genome-wide insertional mutagenesis of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RCJ, Wagner J, Perugini MA (2012) Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS ONE 7, e38318
Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFyhsrg%3D&md5=92f275b4c5506a09186b1644c1209209CAS |

Bartlem D, Lambein I, Okamoto T, Itaya A, Uda Y, Kijima F, Tamaki Y, Nambara E, Naito S (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiology 123, 101–110.
Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFenu7k%3D&md5=f72f5fac255a9c436d5369b9bd02d9b4CAS |

Bunker RD, Loomes KM, Baker EN (2012) Purification, crystallization and preliminary crystallographic analysis of human dihydrodipicolinate synthase-like protein (DHDPSL). Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 68, 59–62.
Purification, crystallization and preliminary crystallographic analysis of human dihydrodipicolinate synthase-like protein (DHDPSL).Crossref | GoogleScholarGoogle Scholar |

Chen L, Bush DR (1997) LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis. Plant Physiology 115, 1127–1134.
LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1yktbs%3D&md5=716191e9ca6b2f5da7e19be5715ec936CAS |

Chen IC, Thiruvengadam V, Lin W-D, Chang H-H, Hsu W-H (2010) Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Molecular Biology 72, 153–169.
Lysine racemase: a novel non-antibiotic selectable marker for plant transformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2mtb%2FN&md5=3a03f933edbf4fbc0d6ffe8634cc0a42CAS |

Craciun A, Jacobs M, Vauterin M (2000) Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms. FEBS Letters 487, 234–238.
Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVShsg%3D%3D&md5=d5b1a79cb05cf1ef06ea4df7a4bba48eCAS |

Curien G, Job D, Douce R, Dumas R (1998) Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry 37, 13 212–13 221.
Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFKhurs%3D&md5=f74c6c001570629ccaa0288a06f9e0d8CAS |

Curien G, Ravanel S, Robert M, Dumas R (2005) Identification of six novel allosteric effectors of Arabidopsis thaliana aspartate kinase–homoserine dehydrogenase isoforms. Physiological context sets the specificity. The Journal of Biological Chemistry 280, 41 178–41 183.
Identification of six novel allosteric effectors of Arabidopsis thaliana aspartate kinase–homoserine dehydrogenase isoforms. Physiological context sets the specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlShsb%2FJ&md5=efd332abf31eed616de1c83f2e3ccd90CAS |

Dobson RC, Gerrard JA, Pearce FG (2004a) Dihydrodipicolinate synthase is not inhibited by its substrate, (S)-aspartate β-semialdehyde. Biochemical Journal 377, 757–762.
Dihydrodipicolinate synthase is not inhibited by its substrate, (S)-aspartate β-semialdehyde.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Gkug%3D%3D&md5=42153824263928a9ca1bc4ae947f7ebaCAS |

Dobson RC, Valegard K, Gerrard JA (2004b) The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: further evidence for a catalytic triad. Journal of Molecular Biology 338, 329–339.
The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: further evidence for a catalytic triad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVeltL8%3D&md5=2722df4eeaccea049a36cad7d0bd1731CAS |

Dobson RCJ, Girón I, Hudson AO (2011) Diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development. PLoS ONE 6, e20439
Diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCrt7s%3D&md5=6b5cc581cf4cfcad417c3090f11ca03bCAS |

Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 92, 12 036–12 040.
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhtlyqtg%3D%3D&md5=50b060f39f6b0a3b82e42dc49e5623b5CAS |

Galili G, Tang G, Zhu X, Gakière B (2001) Lysine catabolism: a stress and development super-regulated metabolic pathway. Current Opinion in Plant Biology 4, 261–266.
Lysine catabolism: a stress and development super-regulated metabolic pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFOksrg%3D&md5=9762f9f7a565a4332083c6f658550f6eCAS |

Ghislain M, Frankard V, Vandenbossche D, Matthews BF, Jacobs M (1994) Molecular analysis of the aspartate kinase–homoserine dehydrogenase gene from Arabidopsis thaliana. Plant Molecular Biology 24, 835–851.
Molecular analysis of the aspartate kinase–homoserine dehydrogenase gene from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslWku70%3D&md5=adceb0948e22c111c234ef87de0ee239CAS |

Goto DB, Ogi M, Kijima F, Kumagai T, van Werven F, Onouchi H, Naito S (2002) A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana. Genes & Genetic Systems 77, 89–95.
A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGgtL0%3D&md5=4bafe76488fbe6b3192b0be6523db9fdCAS |

Griffin MDW, Billakanti JM, Wason A, Keller S, Mertens HDT, Atkinson SC, Dobson RCJ, Perugini MA, Gerrard JA, Pearce FG (2012) Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana. PLoS ONE 7, e40318
Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVars7jN&md5=86cc7d5463d3cbed6169aea02ff1f628CAS |

Guo BB, Devenish SR, Dobson RC, Muscroft-Taylor AC, Gerrard JA (2009) The C-terminal domain of Escherichia coli dihydrodipicolinate synthase (DHDPS) is essential for maintenance of quaternary structure and efficient catalysis. Biochemical and Biophysical Research Communications 380, 802–806.
The C-terminal domain of Escherichia coli dihydrodipicolinate synthase (DHDPS) is essential for maintenance of quaternary structure and efficient catalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1ejsbw%3D&md5=7ab2f44eece655092188a38c8901a25aCAS |

Heremans B, Jacobs M (1997) A mutant of Arabidopsis thaliana (L.) Heynh. with modified control of aspartate kinase by threonine. Biochemical Genetics 35, 139–153.
A mutant of Arabidopsis thaliana (L.) Heynh. with modified control of aspartate kinase by threonine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFagsrg%3D&md5=92b8111ab8e933ba963d756fdad5ef59CAS |

Hudson AO, Singh BK, Leustek T, Gilvarg C (2006) An ll-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants. Plant Physiology 140, 292–301.
An ll-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgtrs%3D&md5=3ef1e3a894e1cf4f0ff4356e5749f395CAS |

Jander G, Joshi V (2009) Aspartate-derived amino acid biosynthesis in Arabidopsis thaliana. In ‘The Arabidopsis Book’. e0121.

Jander G, Norris SR, Joshi V, Fraga M, Rugg A, Yu S, Li L, Last RL (2004) Application of a high-throughput HPLC-MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. The Plant Journal 39, 465–475.
Application of a high-throughput HPLC-MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVSqu7k%3D&md5=d79a2fe67a2c8772db8175ca40ee0ed2CAS |

Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular & General Genetics 204, 383–396.
The promoter of TL-DNA gene 5 controls the tissue specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVeqtLk%3D&md5=afa54ef2cad19e9fb42462502b3cbb82CAS |

Kumpaisal R, Hashimoto T, Yamada Y (1987) Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures. Plant Physiology 85, 145–151.
Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjtl2isg%3D%3D&md5=7a3066098d1a125c2f311f3e7365c6dcCAS |

Lambein I, Chiba Y, Onouchi H, Naito S (2003) Decay kinetics of autogenously regulated CGS1 mRNA that codes for cystathionine gamma-synthase in Arabidopsis thaliana. Plant & Cell Physiology 44, 893–900.
Decay kinetics of autogenously regulated CGS1 mRNA that codes for cystathionine gamma-synthase in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslKkt74%3D&md5=1d244fddd0a2ccedad21e5a1ec16845fCAS |

Lee M, Martin MN, Hudson AO, Lee J, Muhitch MJ, Leustek T (2005) Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana. The Plant Journal 41, 685–696.
Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWitb4%3D&md5=0838c4a70eab36d154051735027a8be4CAS |

Muralla R, Sweeney C, Stepansky A, Leustek T, Meinke D (2007) Genetic dissection of histidine biosynthesis in Arabidopsis. Plant Physiology 144, 890–903.
Genetic dissection of histidine biosynthesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvValt7o%3D&md5=d518bd840c4f7a19f1df9fea46dbfce4CAS |

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
A revised medium for rapid growth and bioassays with tobacco tissue cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksFKm&md5=653cbff4216b152d155a6572062308d2CAS |

Niyogi KK, Last RL, Fink GR, Keith B (1993) Suppressors of trp1 fluorescence identify a new Arabidopsis gene, TRP4, encoding the anthranilate synthase β subunit. The Plant Cell 5, 1011–1027.

Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y, Sakurai R, Nagao N, Kawasaki D, Kadokura Y, Naito S (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes & Development 19, 1799–1810.
Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFaht74%3D&md5=0c4a70731f74f58497708383fe10776fCAS |

Paris S, Wessel PM, Dumas R (2002) Overproduction, purification, and characterization of recombinant bifunctional threonine-sensitive aspartate kinase–homoserine dehydrogenase from Arabidopsis thaliana. Protein Expression and Purification 24, 105–110.
Overproduction, purification, and characterization of recombinant bifunctional threonine-sensitive aspartate kinase–homoserine dehydrogenase from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlOrug%3D%3D&md5=7667b243c977c7697284b181745f6d30CAS |

Paris S, Viemon C, Curien G, Dumas R (2003) Mechanism of control of Arabidopsis thaliana aspartate kinase–homoserine dehydrogenase by threonine. The Journal of Biological Chemistry 278, 5361–5366.
Mechanism of control of Arabidopsis thaliana aspartate kinase–homoserine dehydrogenase by threonine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVKlurY%3D&md5=48fe6f267600e2e607eb66784760ee41CAS |

Sarrobert C, Thibaud MC, Contard-David P, Gineste S, Bechtold N, Robaglia C, Nussaume L (2000) Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene. The Plant Journal 24, 357–368.
Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosleju7w%3D&md5=1694d4993a243f0764837c23bf4daeb9CAS |

Shaul O, Galili G (1992a) Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. The Plant Journal 2, 203–209.
Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVKqtLk%3D&md5=b55252f7fc1977c8243c2608c9ff781cCAS |

Shaul O, Galili G (1992b) Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli. Plant Physiology 100, 1157–1163.
Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhslWksw%3D%3D&md5=917ac4678b16d307847eb5f93b0418b4CAS |

Shaul O, Galili G (1993) Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Molecular Biology 23, 759–768.
Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVaksg%3D%3D&md5=786d9364af0bb6d629291c7304932aa2CAS |

Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-l-methionine synthetase 3 gene. The Plant Journal 29, 371–380.
High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-l-methionine synthetase 3 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFOitLs%3D&md5=7412ee8225b1e2dcd8d786c957c6bdb3CAS |

Song JT, Lu H, Greenberg JT (2004) Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, aberrant growth and death2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. The Plant Cell 16, 353–366.
Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, aberrant growth and death2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFKis78%3D&md5=b29952d83de4ca9b7026de166f429a07CAS |

Stuttmann J, Hubberten HM, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE (2011) Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. The Plant Cell 23, 2788–2803.
Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFeqsL%2FF&md5=d3e4ed449dc2ae245e575ddf81354eb3CAS |

Vasta JD, Fried B, Sherma J (2008) High performance thin layer chromatographic analysis of neutral lipids in the urine of BALB/c mice infected with Echinostoma caproni. Parasitology Research 102, 625–629.
High performance thin layer chromatographic analysis of neutral lipids in the urine of BALB/c mice infected with Echinostoma caproni.Crossref | GoogleScholarGoogle Scholar |

Vauterin M, Jacobs M (1994) Isolation of a poplar and an Arabidopsis thaliana dihydrodipicolinate synthase cDNA clone. Plant Molecular Biology 25, 545–550.
Isolation of a poplar and an Arabidopsis thaliana dihydrodipicolinate synthase cDNA clone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1Cqsrs%3D&md5=af9fd8f9eb502d481ac1cc983b9f1cf7CAS |

Vauterin M, Frankard V, Jacobs M (2000) Functional rescue of a bacterial dapA auxotroph with a plant cDNA library selects for mutant clones encoding a feedback-insensitive dihydrodipicolinate synthase. The Plant Journal 21, 239–248.
Functional rescue of a bacterial dapA auxotroph with a plant cDNA library selects for mutant clones encoding a feedback-insensitive dihydrodipicolinate synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisValu7w%3D&md5=1c146d42762168f396cd1fcfca2a85e1CAS |

Zhu X, Galili G (2004) Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Plant Physiology 135, 129–136.
Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt12ntbw%3D&md5=203e5a06c5f44c5ebd4b598e80f3a4a9CAS |