Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
EVOLUTIONARY REVIEW

The convergent evolution of aluminium resistance in plants exploits a convenient currency

Peter R. Ryan A B and Emmanuel Delhaize A
+ Author Affiliations
- Author Affiliations

A CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

B Corresponding author. Email: peter.ryan@csiro.au

This paper is part of an ongoing series: ‘The Evolution of Plant Functions’.

Functional Plant Biology 37(4) 275-284 https://doi.org/10.1071/FP09261
Submitted: 30 October 2009  Accepted: 22 January 2010   Published: 26 March 2010

Abstract

Suspicions that soluble aluminium (Al) is detrimental to plant growth were reported more than 100 years ago. The rhizotoxicity of Al3+ is now accepted as the major limitation to plant production on acidic soils. Plants differ in their susceptibility to Al3+ toxicity and significant variation can occur within species, even in some major crops. The physiology of Al3+ resistance in some species has been understood for 15 years but the molecular biology has been elucidated only recently. The first gene controlling Al3+ resistance was cloned from wheat (Triticum aestivum L.) in 2004 but others have now been identified in Arabidopsis, barley (Hordeum vulgare L.), rye (Secale cereale L.), sorghum (Sorghum bicolour (L.) Moench) and rice (Oryza sativa L.) with strong additional candidates in wheat and oilseed rape (Brassica napus L.). These genes confer resistance in different ways, but one mechanism occurs in nearly all species examined so far. This mechanism relies on the release of organic anions from roots which bind with the harmful Al3+ cations in the apoplast and detoxify them. The genes controlling this response come from at least two distinct families, suggesting that convergent evolution has occurred. We discuss the processes driving this convergence of protein function and offer opinions for why organic anions are central to the mechanisms of resistance in disparate species. We propose that mutations which modify protein expression or their activation by Al3+ have played important roles in co-opting different transport proteins from other functions.

Additional keywords: acid soil, aluminum, anion channel, citrate, malate, tolerance, toxicity.


References


Berzonsky WA, Kimber G (1986) Tolerance of Triticum species to aluminum. Plant Breeding 97, 275–278.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179, 669–682.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cosic T, Poljak M, Custic M, Rengel Z (1994) Aluminum tolerance of durum-wheat germplasm. Euphytica 78, 239–243.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology 103, 695–702.
CAS | PubMed |
open url image1

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101, 15249–15254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Letters 581, 2255–2262.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology 144, 197–205.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Felsenstein J (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39, 783–791.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70, 828–832.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Communications in Soil Science and Plant Analysis 19, 959–987.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fujii M , Yamaji N , Sato K , Ma JF (2009) Mechanism regulating HvAACT1 expression in barley. In ‘Plant–soil interactions at low pH: a nutriomic approach. Proceedings of the 7th international symposium of plant–soil interactions at low pH’. (Eds H Liao, X Yan, LV Kochian) pp. 165–166. (South China University of Technology Press: Guangzhou)

Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant & Cell Physiology 48, 1081–1091.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Garvin DF , Carver BF (2003) Role of the genotype in tolerance to acidity and aluminum toxicity. In ‘Handbook of soil acidity’. (Ed. Z. Rengel) pp. 387–406. (Marcel Dekker Inc.: New York)

Gruber BD (2009) Characterisation of the HvALMT1 gene from barley. PhD Thesis. The Australian National University, Canberra, ACT.

Hiradate S, Ma JF, Matsumoto H (2007) Strategies of plants to adapt to mineral stresses in problem soils. Advances in Agronomy 96, 65–132.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hoekenga OA, Maron LG, Piñeros MA, Cançado GMA, Shaff JE , et al . (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 9738–9743.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. The Plant Cell 21, 655–667.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH (2003) The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. European Journal of Biochemistry 270, 799–813.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics 33, 102–106.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kataoka T, Stekelenburg A, Nakanishi TM, Delhaize E, Ryan PR (2002) Several lanthanides activate malate efflux from roots of aluminium-tolerant wheat. Plant, Cell & Environment 25, 453–460.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kinraide TB (1991) Identity of the rhizotoxic aluminium species. Plant and Soil 134, 167–178.
CAS |
open url image1

Kinraide TB (1994) Use of a Gouy–Chapman–Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiology 106, 1583–1592.
CAS | PubMed |
open url image1

Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiology 145, 843–852.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annual Review of Plant Biology 55, 459–493.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Konishi S, Ferguson IB, Putterill J (1988) Effect of acidic polypeptides on aluminium toxicity in tube growth of pollen from tea (Camellia sinensis L.). Plant Science 56, 55–59.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kovermann P, Meyer S, Hortensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal 52, 1169–1180.
CAS | PubMed |
open url image1

Lance C, Rustin P (1984) The central role of malate in plant-metabolism. Physiologie Vegetale 22, 625–641.
CAS |
open url image1

Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. The Plant Journal 41, 353–363.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225, 1447–1458.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology 142, 1294–1303.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Liu JP, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57, 389–399.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Luttge U (1987) Carbon-dioxide and water demand- crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytologist 106, 593–629.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiology 117, 753–759.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6, 273–278.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Magalhaes JV (2006) Aluminum tolerance genes are conserved between monocots and dicots. Proceedings of the National Academy of Sciences of the United States of America 103, 9749–9750.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC , et al . (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39, 1156–1161.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff JE, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. The Plant Journal 61, 728–740.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58, 83–102.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology 200, 1–46.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Osmond CB (1976) Ion absorption and carbon metabolism in cells of higher plants. In ‘Encyclopedia of plant physiology. New series. Vol. 2’. (Eds U Luttge, MG Pitman) pp. 347–372. (Springer-Verlag: Berlin)

Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Review of Genetics 34, 401–437.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430, 887–891.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Piñeros MA, Cançado GMA, Maron LG, Lyi SM, Menossi M, Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter. The Plant Journal 53, 352–367.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Poschenrieder C, Tolrà RP, Barcelo J (2005) A role for cyclic hydroxamates in aluminium resistance in maize? Journal of Inorganic Biochemistry 99, 1830–1836.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Putterill JJ, Gardner RC (1988) Proteins with the potential to protect plants from Al3+ toxicity. Biochimica et Biophysica Acta 1988, 137–145. open url image1

Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K , et al . (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theoretical and Applied Genetics 116, 343–354.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Reumann S, Weber APM (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C-2 cycle have become filled – others remain. Biochimica et Biophysica Acta – Molecular. Cell Research 1763, 1496–1510.
CAS | Crossref |
open url image1

Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. The Plant Cell 14, 1787–1799.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology 148, 1547–1556.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany 44, 437–446.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ryan PR, Delhaize E, Randall PJ (1995) Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196, 103–110.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52, 527–560.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology 149, 340–351.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Saitou N, Nei M (1987) The neighbour-joining method – a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
CAS | PubMed |
open url image1

Sakano K (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant & Cell Physiology 39, 467–473.
CAS |
open url image1

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37, 645–653.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y , et al . (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant & Cell Physiology 47, 1343–1354.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T , et al . (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiology 150, 281–294.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of Zea mays L. Plant Physiology 116, 155–163.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Slootmaker LAJ (1974) Tolerance to high soil acidity in wheat related species, rye and triticale. Euphytica 23, 505–513.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Taylor GJ (1988 a) The physiology of aluminum phytotoxicity. In ‘Metal ions in biological systems. Vol. 24’. (Eds H Sigel, A Sigel) pp. 123–163. (Marcell Dekker: New York)

Taylor GJ (1988b) The physiology of aluminum tolerance in higher plants. Communications in Soil Science and Plant Analysis 19, 1179–1194.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Taylor GJ (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Current Topics in Plant Biochemistry and Physiology 10, 57–93.
CAS |
open url image1

Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiology 101, 339–344.
CAS | PubMed |
open url image1

Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 115, 265–276.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Weber APM, Fischer K (2007) Making the connections – the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Letters 581, 2215–2222.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wicker T, Yahiaoui N, Keller B (2007) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. The Plant Journal 51, 631–641.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution 20, 1377–1419.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant & Cell Physiology 46, 812–816.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamaji N, Huan CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes involved in aluminum tolerance in rice. The Plant Cell 21, 3339–3349.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2003) Oxidative stress triggered by aluminum in plant roots. Plant and Soil 255, 239–243.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yokosho K , Yamaji N , Ma JF (2009 a) Functional analysis of OsFRDL4, a citrate transporter gene induced by aluminum. In ‘Plant–soil interactions at low pH: a nutriomic approach. Proceedings of the 7th international symposium of plant–soil interactions at low pH’. (Eds H Liao, X Yan, LV Kochian) pp. 161–162. (South China University of Technology Press: Guangzhou)

Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009b) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiology 149, 297–305.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhang W, Ryan PR, Sasaki T, Yamamoto Y, Sullivan W, Tyerman SD (2008) Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant & Cell Physiology 49, 1316–1330.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. 1. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology 117, 745–751.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1