Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Desiccation protects two Antarctic mosses from ultraviolet-B induced DNA damage

Johanna D. Turnbull A , Simon J. Leslie A and Sharon A. Robinson A B
+ Author Affiliations
- Author Affiliations

A Institute for Conservation Biology, University of Wollongong, NSW 2522, Australia.

B Corresponding author. Email: sharonr@uow.edu.au

Functional Plant Biology 36(3) 214-221 https://doi.org/10.1071/FP08286
Submitted: 5 November 2008  Accepted: 16 January 2009   Published: 2 March 2009

Abstract

Antarctic mosses live in a frozen desert, and are characterised by the ability to survive desiccation. They can tolerate multiple desiccation-rehydration events over the summer growing season. As a result of recent ozone depletion, such mosses may also be exposed to ultraviolet-B radiation while desiccated. The ultraviolet-B susceptibility of Antarctic moss species was examined in a laboratory experiment that tested whether desiccated or hydrated mosses accumulated more DNA damage under enhanced ultraviolet-B radiation. Accumulation of cyclobutane pyrimidine dimers and pyrimidine (6–4) pyrimidone dimers was measured in moss samples collected from the field and then exposed to ultraviolet-B radiation in either a desiccated or hydrated state. Two cosmopolitan species, Ceratodon purpureus (Hedw.) Brid. and Bryum pseudotriquetrum (Hedw.) Gaertn., B.Mey. & Scherb, were protected from DNA damage when desiccated, with accumulation of cyclobutane pyrimidine dimers reduced by at least 60% relative to hydrated moss. The endemic Schistidium antarctici (Cardot) L.I. Savicz & Smirnova accumulated more DNA damage than the other species and desiccation was not protective in this species. The cosmopolitan species remarkable ability to tolerate high ultraviolet-B exposure, especially in the desiccated state, suggests they may be better able to tolerate continued elevated ultraviolet-B radiation than the endemic species.

Additional keywords: Bryum pseudotriquetrum, Ceratodon purpureus, cyclobutane pyrimidine dimers, Grimmia antarctici, Schistidium antarctici, UV-B, (6-4) photoproducts.


Acknowledgements

This research was supported by grant funding, permits and logistic support from the Australian Antarctic Division. We would like to thank Jane Wasley for field assistance in Antarctica; Professor Osumu Nikaido for kindly providing the TDM-2 and 64M-2 monoclonal antibodies used in this study and Kevin Newsham, Laurence Clarke, Nicole Grant and Osumu Nikaido for suggesting improvements to the manuscript.


References


Allen DJ, Nogues S, Morison JIL, Greenslade PD, McLeod AR, Baker NR (1999) A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field. Global Change Biology 5, 235–244.
Crossref | GoogleScholarGoogle Scholar | open url image1

Arróniz-Crespo M, Núnez-Olivera E, Martínez-Abaigar J, Becker H, Scher J, Zapp J, Tomás R, Beaucourt N (2006) Physiological changes and UV protection in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia along an altitudinal gradient of UV-B radiation. Functional Plant Biology 33, 1025–1036.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boelen P, de Boer MK, de Bakker NVJ, Rozema J (2006) Outdoor studies on the effects of solar UV-B on bryophytes: overview and methodology. Plant Ecology 182, 137–152. open url image1

Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynthesis Research 81, 105–112.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Buffoni-Hall RS, Paulsson M, Duncan K, Tobin AK, Widell S, Bornman JF (2003) Water- and temperature-dependence of DNA damage and repair in the fruticose lichen Cladonia arbuscula ssp. mitis exposed to UV-B radiation. Physiologia Plantarum 118, 371–379.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caldwell MM (1971) Solar UV radiation and the growth and development of higher plants. In ‘Photophysiology’. (Ed. AC Giese) pp. 131–177. (Academic Press: New York)

Clarke LJ, Robinson SA (2008) Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytologist 179, 776–783.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biological Reviews of the Cambridge Philosophical Society 74, 311–345.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Csintalan Z, Tuba Z, Tákacs Z, Laitat E (2001) Responses of nine bryophyte and one lichen species from different microhabitats to elevated UV-B radiation. Photosynthetica 39, 317–320.
Crossref | GoogleScholarGoogle Scholar | open url image1

Davey MC, Ellis-Evans JC (1996) The influence of water content on the light climate within Antarctic mosses characterized using an optical microprobe. Journal of Bryology 19, 235–242. open url image1

Dunn JL, Robinson SA (2006) Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. Global Change Biology 12, 2282–2296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gehrke C (1999) Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80, 1844–1851. open url image1

Giordano CV, Mori T, Sala OE, Scopel AL, Caldwell MM, Ballaré CL (2003) Functional acclimation to solar UV-B radiation in Gunnera magellanica, a native plant species of southernmost Patagonia. Plant, Cell & Environment 26, 2027–2036.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heber U, Bilger W, Bligny R, Lange OL (2000) Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Planta 211, 770–780.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jiang C-Z, Lee J, Mitchell DL, Britt AB (1997) Photorepair mutants of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 94, 7441–7445.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J, Sakaguchi K (2004) DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Research 32, 2760–2767.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kinzie RA, Banaszak AT, Lesser MP (1998) Effects of ultraviolet radiation on primary productivity in a high altitude tropical lake. Hydrobiologia 385, 23–32.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Lappalainen NM, Huttunen S, Suokanerva H (2008) Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biology 14, 321–333. open url image1

Lovelock CE, Robinson SA (2002) Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell & Environment 25, 1239–1250.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lovelock CE, Osmond CB, Seppelt RD (1995) Photoinhibition in the Antarctic moss Grimmia antarctica Card. when exposed to cycles of freezing and thawing. Plant, Cell & Environment 18, 1395–1402.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lud D, Buma AGJ, van de Poll WH, Moerdijk TCW, Huiskes AHL (2001) DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola crispa ssp antarctica (Chlorophyta) under manipulated UV-B radiation. Journal of Phycology 37, 459–467.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lud D, Moerdijk TCW, van de Poll WH, Buma AGJ, Huiskes AHL (2002) DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation. Plant, Cell & Environment 25, 1579–1589.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

MacFadyen EJ, Williamson CE, Grad G, Lowery M, Jeffrey WH, Mitchell DL (2004) Molecular response to climate change: temperature dependence of UV-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biology 10, 408–416.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manetas Y, Petropoulou Y, Stamatakis K, Nikolopoulos D, Levizou E, Psaras G, Karabourniotis G (1997) Beneficial effects of enhanced UV-B radiation under field conditions: improvement of needle water relations and survival capacity of Pinus pinea L. seedlings during the dry Mediterranean summer. Plant Ecology 128, 101–108.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mason MG, Schmidt S (2002) Rapid isolation of total RNA and genomic DNA from Hakea actities. Functional Plant Biology 29, 1015–1016.
Crossref | GoogleScholarGoogle Scholar | open url image1

McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyasd M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochemical & Photobiological Sciences 6, 218–231.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mori T, Nakane M, Hattori T, Matsunaga T, Ihara M, Nikaido O (1991) Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyramidine dimer or (6–4) photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochemistry and Photobiology 54, 225–232.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Newsham KK (2003) UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the moss Andreaea regularis. Oecologia 135, 327–331.
CAS | PubMed |
open url image1

Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Lewis Smith RI (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biology 8, 972–983.
Crossref | GoogleScholarGoogle Scholar | open url image1

Newsham KK, Geissler P, Nicolson M, Peat HJ, Lewis Smith RI (2005) Sequential reduction of UV-B radiation in the field alters the pigmentation of an Antarctic leafy liverwort. Environmental and Experimental Botany 54, 22–32.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nogues S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany 51, 1309–1317.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Petropoulou Y, Kyparissis A, Nikolopoulos D, Manetas Y (1995) Enhanced UV-B radiation alleviates the adverse-effects of summer drought in two Mediterranean pines under field conditions. Physiologia Plantarum 94, 37–44.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Proctor MCF, Tuba Z (2002) Poikilohydry and homiohydry: antithesis or spectrum of possibilities. New Phytologist 156, 327–349.
Crossref | GoogleScholarGoogle Scholar | open url image1

Robinson SA, Wasley J, Popp M, Lovelock CE (2000) Desiccation tolerance of three moss species from continental Antarctica. Australian Journal of Plant Physiology 27, 379–388.
CAS |
open url image1

Robinson SA, Turnbull JD, Lovelock CE (2005) Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Global Change Biology 11, 476–489.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rousseaux MC, Ballaré CL, Giordano CV, Scopel AL, Zima AM, Szwarcberg-Bracchitta M, Searles PS, Caldwell MM, Diaz SB (1999) Ozone depletion and UVB radiation: impacts on plant DNA damage in southern South America. Proceedings of the National Academy of Sciences of the United States of America 96, 15310–15315.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Seckmeyer G, Mayer B, Bernhard G, McKenzie RL, Johnston PV , et al . (1995) Geographical differences in the UV measured by intercompared spectroradiometers. Geophysical Research Letters 22, 1889–1892.
Crossref | GoogleScholarGoogle Scholar | open url image1

Seel WE, Baker NR, Lee JA (1992a) Analysis of the decrease in photosynthesis on desiccation of mosses from xeric and hydric environments. Physiologia Plantarum 86, 451–458.
Crossref | GoogleScholarGoogle Scholar | open url image1

Seel WE, Hendry GAF, Lee JA (1992b) The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. Journal of Experimental Botany 43, 1023–1030.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tákacs Z, Csintalan Z, Sass L, Laitat E, Vass I, Tuba Z (1999) UV-B tolerance of bryophyte species with different degrees of desiccation tolerance. Journal of Photochemistry and Photobiology. B, Biology 48, 210–215.
Crossref | GoogleScholarGoogle Scholar | open url image1

Taylor RM, Nikaido O, Jordan BR, Rosamond J, Bray CM, Tobin AK (1996) Ultraviolet-B-induced DNA lesions and their removal in wheat (Triticum aestivum L.) leaves. Plant, Cell & Environment 19, 177–181. open url image1

Taylor RM , Tobin AK , Bray CM (1997) DNA damage and repair in plants. In ‘Plants and UV-B. Responses to environmental change’. (Ed. PJ Lumsden) pp. 53–76. (Cambridge University Press: Cambridge)

Turnbull JD, Robinson SA (2009) Accumulation of DNA damage in Antarctic mosses: correlations with ultraviolet-B radiation, temperature and turf water content vary among species. Global Change Biology 15, 319–329.
Crossref | GoogleScholarGoogle Scholar | open url image1

Venturini C (2003) Effects of light environment and temperature on UV-B induced DNA damage repair mechanisms in the Antactic moss Ceratodon purpureus. BSc. Honours thesis, School of Biological Sciences, University of Wollongong, NSW, Australia.

Wasley J, Robinson SA, Lovelock CE, Popp M (2006) Some like it wet – an endemic Antarctic bryophyte likely to be threatened under climate change induced drying. Functional Plant Biology 33, 443–455.
Crossref | GoogleScholarGoogle Scholar | open url image1