Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Transcriptome analysis of leaf tissue from Bermudagrass (Cynodon dactylon) using a normalised cDNA library

Changsoo Kim A , Cheol Seong Jang A B , Terry L. Kamps A C , Jon S. Robertson A , Frank A. Feltus A D and Andrew H. Paterson A E
+ Author Affiliations
- Author Affiliations

A Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.

B Present address: Institute of Life Science and Natural Resources, Korea University, Seoul, Korea.

C Present address: Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.

D Present address: Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.

E Corresponding author. Email: paterson@uga.edu

Functional Plant Biology 35(7) 585-594 https://doi.org/10.1071/FP08133
Submitted: 18 April 2008  Accepted: 3 June 2008   Published: 21 August 2008

Abstract

A normalised cDNA library was constructed from Bermudagrass to gain insight into the transcriptome of Cynodon dactylon L. A total of 15 588 high-quality expressed sequence tags (ESTs) from the cDNA library were subjected to The Institute for Genomic Research Gene Indices clustering tools to produce a unigene set. A total of 9414 unigenes were obtained from the high-quality ESTs and only 39.6% of the high-quality ESTs were redundant, indicating that the normalisation procedure was effective. A large-scale comparative genomic analysis of the unigenes was carried out using publicly available tools, such as BLAST, InterProScan and Gene Ontology. The unigenes were also subjected to a search for EST-derived simple sequence repeats (EST-SSRs) and conserved-intron scanning primers (CISPs), which are useful as DNA markers. Although the candidate EST-SSRs and CISPs found in the present study need to be empirically tested, they are expected to be useful as DNA markers for many purposes, including comparative genomic studies of grass species, by virtue of their significant similarities to EST sequences from other grasses. Thus, knowledge of Cynodon ESTs will empower turfgrass research by providing homologues for genes that are thought to confer important functions in other plants.

Additional keywords: conserved-intron scanning primer, expressed sequence tag, golf courses, simple sequence repeat.


Acknowledgements

This work was financially supported by the United States Golf Association. We thank Dr Wayne Hanna for providing plant materials.


References


Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theoretical and Applied Genetics 104, 229–235.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Attwood TK, Beck ME, Flower DR, Scordis P, Selley JN (1998) The PRINTS protein fingerprint database in its fifth year. Nucleic Acids Research 26, 304–308.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Austin R, Provart NJ, Sacadura NR, Nugent KG, Babu M, Saville BJ (2004) A comparative genomic analysis of ESTs from Ustilago maydis. Functional & Integrative Genomics 4, 207–218.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226, 1209–1211.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Barkley NA, Newman ML, Wang ML, Hotchkiss MW, Pederson GA (2005) Assessment of the genetic diversity and phylogenetic relationships of a temperate bamboo collection by using transferred EST-SSR markers. Genome 48, 731–737.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Beard JB (1973) ‘Turfgrass: science and culture.’ (Prentice-Hall: Englewood Cliffs)

Bhat PR, Krishnakumar V, Hendre PS, Rajendrakumar P, Varshney RK, Aggarwal RK (2005) Identification and characterization of expressed sequence tags-derived simple sequence repeats, markers from robusta coffee variety ‘C × R’ (an interspecific hybrid of Coffea canephora × Coffea congensis). Molecular Ecology Notes 5, 80–83.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brautigam M, Lindlof A, Zakhrabekova S, Gharti-Chhetri G, Olsson B, Olsson O (2005) Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biology 5, 18.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Brendel V, Kurtz S, Walbot V (2002) Comparative genomics of Arabidopsis and maize: prospects and limitations. Genome Biology 3, reviews1005.1–reviews1005.6.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Research 33, D212–D215.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Caetano-Anolles G (1998) DNA analysis of turfgrass genetic diversity. Crop Science 38, 1415–1424. open url image1

Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K , et al. (2000) Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Research 10, 1617–1630.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chagné D, Chaumeil P, Ramboer A, Collada C, Guevara A , et al. (2004) Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theoretical and Applied Genetics 109, 1204–1214.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chai B, Sticklen M (1998) Applications of biotechnology in turfgrass genetic improvement. Crop Science 38, 1320–1328. open url image1

Cho S, Ok S, Jeung J, Shim K, Jung K , et al. (2004) Comparative analysis of 5,211 leaf ESTs of wild rice (Oryza minuta). Plant Cell Reports 22, 839–847.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cruveiller S, Jabbari K, Clay O, Bernardi G (2004) Incorrectly predicted genes in rice? Gene 333, 187–188.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, Silva JD, Tucker GA, Seymour GB (2004) Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiology 136, 4184–4197.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred II error probabilities. Genome Research 8, 186–194.
PubMed |
open url image1

Ewing RM, Kahla AB, Poirot O, Lopez F, Audic S, Claverie J-M (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Research 9, 950–959.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiology 140, 1183–1191.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V , et al. (2006) Pfam: clans, web tools and services. Nucleic Acids Research 34, D247–D251.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fraser LG, McNeilage MA, Tsang GK, Harvey CF, De Silva HN (2005) Cross-species amplification of microsatellite loci within dioecious, polyploidy genus Actinidia (Actinidiaceae). Theoretical and Applied Genetics 112, 149–157.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goff SA, Ricke D, Lan TH, Presting G, Wang R , et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grattan SR, Grieve CM, Poss JA, Robinson PH, Suarez DL, Benes SE (2004) Evaluation of salt-tolerant forages for sequential water reuse systems. I. Biomass production. Agricultural Water Management 70, 109–120.
Crossref | GoogleScholarGoogle Scholar | open url image1

Groth D, Lehrach H, Hennig S (2004) GOblet: a platform for Gene Ontology annotation of anonymous sequence data. Nucleic Acids Research 32, W313–W317.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Research 31, 371–373.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M , et al. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32, D411–D417.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic Acids Research 34, D227–D230.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jany JL, Bousquet J, Khasa DP (2003) Microsatellite markers for Hebeloma species developed from expressed sequence tags in the ectomycorrhizal fungus Hebeloma cylindrosporum. Molecular Ecology Notes 3, 659–661.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krakowski K, Bunville J, Seto J, Baskin D, Seto D (1995) Rapid purification of fluorescent dyelabeled products in a 96-well format for high-throughput automated DNA sequencing. Nucleic Acids Research 23, 4930–4931.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Research 34, D257–D260.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution 21, 991–1007.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ligon PC (1993) Seeds of change. Dealer Progress Magazine Nov–Dec, 29–30. open url image1

Patanjali SR, Parimoo S, Weissman SM (1991) Construction of a uniform-abundance (normalized) cDNA library. Proceedings of the National Academy of Sciences of the United States of America 88, 1943–1947.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pertea G, Huang X, Liang F, Antonescu V, Sultana R , et al. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics (Oxford, England) 19, 651–652.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Porubleva L, Velden KV, Kothari S, Qliver DJ, Chitnis PR (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22, 1724–1738.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rohrer GA, Fahrenkrug SC, Nonneman D, Tao N, Warren WC (2002) Mapping microsatellite markers identified in porcine EST sequences. Animal Genetics 33, 372–376.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology (Clifton, N.J.) 132, 365–386.
PubMed |
open url image1

Soares M, Bonaldo M, Jelene P, Su L, Lawton L, Efstratiadis A (1994) Construction and characterization of a normalized cDNA library. Proceedings of the National Academy of Sciences of the United States of America 91, 9228–9232.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science 168, 195–202.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM , et al. (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Research 13, 2725–2735.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D , et al. (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theoretical and Applied Genetics 113, 186–195.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yu J, Hu S, Wang J, Wong GKS, Li S , et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yu J, Sun Q, La Rota M, Edwards H, Tefera H, Sorrells ME (2006) Expressed sequence tag analysis in tef (Eragrostis tef (Zucc) Trotter). Genome 49, 365–372.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zdobnov EM, Apwiler R (2001) InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics (Oxford, England) 17, 847–848.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang D, Choi DW, Wanamaker S, Fenton RD, Chin A , et al. (2004) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168, 595–608.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang J, Kirkham MB (1996) Antioxidant response to drought in sunflower and sorghum seedlings. The New Phytologist 132, 361–373.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL , et al. (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research 32, e37.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1