Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Characterisation of BcMF10, a novel gene involved in pollen wall development of Brassica rapa ssp. chinensis

Li Huang A , Jiashu Cao A B , Ai-Hong Zhang A , Yu-Chao Zhang A and Yi-Qun Ye A
+ Author Affiliations
- Author Affiliations

A Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310029, People’s Republic of China.

B Corresponding author. Email: jshcao@zju.edu.cn

Functional Plant Biology 35(12) 1194-1204 https://doi.org/10.1071/FP08006
Submitted: 13 January 2008  Accepted: 25 August 2008   Published: 16 December 2008

Abstract

Comparative expression profiling of flower buds in two male sterile lines [genic male sterile (GMS) and cytoplasmic male sterile (CMS)] with its male fertile maintainer line in Chinese cabbage pak-choi was performed using cDNA-AFLP technology to identify the genes implicated in male sterility. A novel gene BcMF10, sharing high sequence similarity to the function-unknown DUF1216 family in Arabidopsis was isolated, whose expression was absent in the flower buds of the GMS and CMS lines but present in the male fertile maintainer line. Temporal and spatial expression pattern analysis revealed that BcMF10 began to be expressed in tapetal cells and microspores during meiosis. Expression in tapetal cells was persistent until the degeneration of tapetum, and expression in microspores reached a peak during the tetrad stage but gradually declined as development proceeded. RNA interference technology was used to address the biological function of BcMF10. The RNAi transgenic Chinese cabbage pak-choi lines showed normal vegetative growth and reproductive development, but poor pollen germination. Scanning electron microscopy (SEM) showed that most of the transgenic pollen was deformed and exhibited an irregular shape with an abnormal number and distribution of germinal furrows. It is speculated that BcMF10 may encode a protein that plays a role in the formation of intine wall.

Additional keywords: Chinese cabbage pak-choi, intine, pollen wall, tapetum.


Acknowledgements

This work was supported the Chinese National Project of Research and Development for High Technology (No. 2006AA100108) and the Key Sci-Technology Project of Zhejiang Province (2005C12019–02).


References


Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. The Plant Journal 12, 615–623.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Anderson JR, Barnes WS, Bedinger P (2002) 2, 6-Dichlorbenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. Plant Physiology 159, 61–67.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Molecular Biology 53, 107–116.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sexual Plant Reproduction 18, 1–7.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal 9, 745–753.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Becker J, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiology 133, 713–725.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Blackmore S , Barnes SH (1990) Pollen wall development in angiosperms In ‘Microspores evolution and ontogeny’. (Eds S Blackmore, RB Knox) pp. 173–192. (Academic Press: San Diego)

Bonhomme S, Budar F, Ferault M, Pelletier G (1991) A 2.5 kb NcoI fragment of Ogura radish mitochondrial-DNA is correlated with cytoplasmic male sterility in Brassica hybrids. Current Genetics 19, 121–127.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Current Biology 12, 1718–1727.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cao J, Cao S-C, Yi Q-M (1995) RAPD analysis on genomic DNA of Chinese cabbage and the other groups of Brassica. Acta Horticulture Sinica 22, 47–52. open url image1

Cao J, Yu X-L, Ye W-Z, Lu G, Xiang X (2006) Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Reports 24, 715–723.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cho HT, Kende H (1997) Expression of expansin genes is correlated with growth in deepwater rice. The Plant Cell 9, 1661–1671.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cui H-M, Cao J, Zhang M-L, Yao X-T, Xiang X (2004) Production of the Ogura cytoplasmic male sterile (CMS) lines of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis var. communis) and turnip (B. campestris L. ssp. rapifera) and cytological observation of their sterile organs. Acta Horticulturae Sinica 31, 467–471. open url image1

El-Ghazaly G, Jelsen WA (1987) Development of wheat (Triticum aeasvum L.) pollen, II Histochemical differentiation of wall and Ublsch bodies during development. American Journal of Botany 74, 1396–1418.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fei HM, Sawhney VK (2001) Ultrastructural characterization of male sterile33 (ms33) mutant in Arabidopsis affected in pollen desiccation and maturation. Canadian Journal of Botany 79, 118–129.
Crossref | GoogleScholarGoogle Scholar | open url image1

Geitmann A , Steer M (2006) The architecture and properties of the pollen tube cell wall. In ‘The pollen tube. Plant Cell Monographs 3’. (Ed. R Malhó) pp. 177–200. (Springer Verlag: Berlin)

Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology 132, 640–652.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Huang L, Cao J, Ye W-Z, Liu T-T, Jiang L, Ye Y-Q (2008) Transcriptional differences between the male sterile mutant bcms and wild type of Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biology 10, 342–355.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang X-Q, Yang W-C, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. The Plant Cell 17, 584–596.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Johnson-Brousseau SA, McCormick S (2004) A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically expressed genes. The Plant Journal 39, 761–775.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiology 132, 517–529.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lee YH, Chung KH, Kim HU, Jin YM, Kim HI, Park BS (2003) Introduction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Reports 22, 268–273.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Márquez J, Seoane-Camba JA, Suárez-Cervera M (1997) Allergenic and antigenic proteins released in the apertural sporoderm during the activation process in grass pollen grains. Sexual Plant Reproduction 10, 269–278.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T , et al. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant & Cell Physiology 37, 49–59.
CAS | PubMed |
open url image1

Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D (2005) Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biology 5, 22–30.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiology 127, 1739–1749.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pina C, Pinto F, Feijó J, Becker J (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiology 138, 744–756.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Regan SM, Moffatt BA (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male sterile mutant. The Plant Cell 2, 877–889.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Scott RJ (1994) Pollen exine: the sporopollenin enigma and the physics of pattern. In ‘Molecular and cellular aspects of plant reproduction’. (Eds RJ Scott, MA Stead MA) pp. 49–81. (Cambridge University Press: Cambridge)

Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. The Plant Cell 16, S46–S60.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shukla AK , Vijayaraghavan MR , Chaudhry B (1998) ‘Biology of pollen.’ (APH Publishing Corp.: New Delhi, India)

Twell D (2002) Pollen developmental biology. In ‘Plant reproduction. Annual plant reviews’. (Eds SD O’Neill, JA Roberts) pp. 86–153. (Sheffield Academic Press: Sheffield)

Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. The Plant Cell 19, 3530–3548.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang LX, Sundaresan V, Ye D (2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. The Plant Cell 15, 2792–2804.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ye W-Z, Cao J, Yu X-L, Huang L, Xiang X, Tao S (2004) Study on the cytomorphology of microsporogenesis in genic male sterile AB line of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino var. communis Tsen et Lee). Chinese Journal of Cell Biology 26, 516–522. open url image1

Yui R, Iketani S, Mikami T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1 subunit in anther tapetum causes male sterility. The Plant Journal 34, 57–66.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development 16, 2021–2031.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen stigma adhesion in Arabidopsis: a pecies-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126, 5431–5440.
CAS | PubMed |
open url image1