Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants

Carlos Lucena A , Francisco J. Romera A C , Carmen L. Rojas A , María J. García B , Esteban Alcántara A and Rafael Pérez-Vicente B
+ Author Affiliations
- Author Affiliations

A Department of Agronomy, Edificio Celestino Mutis (C-4), Campus de Rabanales, University of Córdoba, 14014-Córdoba, Spain.

B Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis (C-4), Campus de Rabanales, University of Córdoba, 14014-Córdoba, Spain.

C Corresponding author. Email: ag1roruf@uco.es

Functional Plant Biology 34(11) 1002-1009 https://doi.org/10.1071/FP07136
Submitted: 31 May 2007  Accepted: 17 September 2007   Published: 1 November 2007

Abstract

Bicarbonate is considered one of the most important factors causing Fe chlorosis in Strategy I plants, mainly on calcareous soils. Most of its negative effects have been attributed to its capacity to buffer a high pH in soils, which can diminish both Fe solubility and root ferric reductase activity. Besides its pH-mediated effects, previous work has shown that bicarbonate can inhibit the induction of enhanced ferric reductase activity in Fe-deficient Strategy I plants. However, to date it is not known whether bicarbonate affects the upregulation of the ferric reductase gene and other genes involved in Fe acquisition. The objective of this work has been to study the effect of bicarbonate on the expression of several Fe acquisition genes in Arabidopsis (Arabidopsis thaliana L.), pea (Pisum sativum L.), tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativus L.) plants. Genes for ferric reductases AtFRO2, PsFRO1, LeFRO1 and CsFRO1; iron transporters AtITR1, PsRIT1, LeIRT1 and CsIRT1; H+-ATPases CsHA1 and CsHA2; and transcription factors AtFIT and LeFER have been examined. The results showed that bicarbonate could induce Fe chlorosis by inhibiting the expression of the ferric reductase, the iron transporter and the H+-ATPase genes, probably through alteration of the expression of Fe efficiency reactions (FER) (or FER-like) transcription factors.

Additional keywords: iron deficiency, reductase, transporter.


Acknowledgements

We thank Dr Brian M. Waters for kindly providing the DNA probes for PsFRO1 and PsRIT1 and Dr Yi-Hong Wang for kindly providing the DNA probes for LeIRT1. This work was supported by the ‘Ministerio de Educación y Ciencia’ (Project AGL2004–07630) and the ‘Junta de Andalucía’ (Research Group AGR115).


References


Alcántara E, Romera FJ, Cañete M, de la Guardia MD (2000) Effects of bicarbonate and iron supply on Fe(III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock Nemaguard. Journal of Plant Nutrition 23, 1607–1617. open url image1

Bauer P, Ling HQ, Guerinot ML (2007) FIT, the FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR in Arabidopsis. Plant Physiology and Biochemistry 45, 260–261.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse I (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiology 136, 4169–4183.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. The Journal of Biological Chemistry 278, 24697–24704.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bienfait HF, Lubberding HJ, Heutink P, Lindner L, Visser J, Kaptein R, Dijkstra K (1989) Rhizosphere acidification by iron deficient bean plants: the role of trace amounts of divalent metal ions. Plant Physiology 90, 359–364.
PubMed |
open url image1

Bloom PR, Inskeep WP (1986) Factors affecting bicarbonate chemistry and iron chlorosis in calcareous soils. Journal of Plant Nutrition 9, 215–228. open url image1

Bohórquez JM, Romera FJ, Alcántara E (2001) Effect of Fe3+, Zn2+ and Mn2+ on ferric reducing capacity and regreening process of the peach rootstock Nemaguard (Prunus persica (L.) Batsch). Plant and Soil 237, 157–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boxma R (1972) Bicarbonate as the most important soil factor in lime-induced chlorosis in the Netherlands. Plant and Soil 37, 233–243.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brown JC, Chaney RL, Ambler JE (1971) A new tomato mutant inefficient in the transport of iron. Physiologia Plantarum 25, 48–53.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brüggemann W, Maaskantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells – the role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 151–155.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brumbarova T, Bauer P (2005) Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiology 137, 1018–1026.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chaney RL (1984) Diagnostic practices to identify iron deficiency in higher plants. Journal of Plant Nutrition 7, 47–67. open url image1

Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50, 208–213.
PubMed |
open url image1

Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology 116, 1063–1072.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cohen CK, Garvin DF, Kochian LV (2004) Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218, 784–792.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell 16, 3400–3412.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Coulombe BA, Chaney RL, Wiebold WJ (1984) Use of bicarbonate in screening soybeans for resistance to iron chlorosis. Journal of Plant Nutrition 7, 411–425. open url image1

Dell’Orto M, Santi S, De Nisi P, Cesco S, Varanini Z, Zocchi G, Pinton R (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. Journal of Experimental Botany 51, 695–701.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eckhardt U, Mas Marques A, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake deficient yeast. Plant Molecular Biology 45, 437–448.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America 93, 5624–5628.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fleming AL, Chaney RL, Coulombe BA (1984) Bicarbonate inhibits Fe-stress response and Fe uptake-translocation of chlorosis-susceptible soybean cultivars. Journal of Plant Nutrition 7, 699–714. open url image1

Fox TC, Guerinot ML (1998) Molecular-biology of cation-transport in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49, 669–696.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216, 541–551.
PubMed |
open url image1

Jakoby M, Wang H-Y, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Letters 577, 528–534.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakarasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology 40, 37–44.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kosegarten H, Hoffmann B, Rroco E, Grolig F, Glusenkamp KH, Mengel K (2004) Apoplastic pH and FeIII reduction in young sunflower (Helianthus annuus) roots. Physiologia Plantarum 122, 95–106.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li LH, Cheng XD, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Molecular Biology 54, 125–136.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proceedings of the National Academy of Sciences of the United States of America 99, 13938–13943.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lucena C, Waters BM, Romera FJ, García MJ, Morales M, Alcántara E, Pérez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. Journal of Experimental Botany 57, 4145–4154.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mengel K, Breininger MT, Bübl W (1984) Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil. Plant and Soil 81, 333–344.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mengel K, Planker R, Hoffmann B (1994) Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). Journal of Plant Nutrition 17, 1053–1065. open url image1

Moog PR , Brüggemann W (1995) Iron reductase systems on the plasma membrane – a review. In ‘Iron Nutrition in Soils and Plants’. (Ed. J Abadía) pp. 343–362. (Kluwer Academic Publishers: The Netherlands)

Nikolic M, Römheld V (2002) Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant and Soil 241, 67–74.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nikolic M, Cesco S, Römheld V, Varanini Z, Pinton R (2007) Short-term interactions between nitrate and iron nutrition in cucumber. Functional Plant Biology 34, 402–408.
Crossref | GoogleScholarGoogle Scholar | open url image1

Porter LK, Thorne DW (1955) Interrelation of carbon dioxide and bicarbonate ions in causing plant chlorosis. Soil Science 79, 373–382.
Crossref | GoogleScholarGoogle Scholar | open url image1

Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397, 694–697.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Romera FJ, Alcántara E (2004) Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Functional Plant Biology 31, 315–328.
Crossref | GoogleScholarGoogle Scholar | open url image1

Romera FJ, Alcántara E, de la Guardia MD (1992) Effects of bicarbonate, phosphate and high pH on the reducing capacity of Fe-deficient sunflower and cucumber plants. Journal of Plant Nutrition 15, 1519–1530. open url image1

Romera FJ, Alcántara E, de la Guardia MD (1997) Influence of bicarbonate and metal ions on the development of root Fe(III) reducing capacity by Fe-deficient cucumber (Cucumis sativus) plants. Physiologia Plantarum 101, 143–148.
Crossref | GoogleScholarGoogle Scholar | open url image1

Romera FJ , Alcántara E , de la Guardia MD (2001) Effects of bicarbonate and anaerobiosis on both ferric reducing capacity and ethylene production by roots of Fe-deficient cucumber plants. In ‘Plant Nutrition-Food Security and Sustainability of Agro-ecosystems’. (Eds WJ Horst, MK Schenk, A Bürkert, N Claassen, H Flessa, et al.) pp. 608–609. (Kluwer Academic Publishers: The Netherlands)

Römheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Advances in Plant Nutrition 2, 155–204. open url image1

Römheld V, Marschner H, Kramer D (1982) Responses to Fe deficiency in roots of Fe-efficient plant species. Journal of Plant Nutrition 5, 489–498. open url image1

Sambrook J , Fritsch EF , Maniatis T (1989) Molecular Cloning: a Laboratory Manual. 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA)

Santi S, Cesco S, Varanini Z, Pinton R (2005) Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiology and Biochemistry 43, 287–292.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schaller G (1987) pH changes in the rhizosphere in relation to the buffering of soils. Plant and Soil 97, 439–444.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sisler EC, Wood C (1988) Interaction of ethylene and CO2. Physiologia Plantarum 73, 440–444.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wadleigh CH, Brown JC (1952) The chemical status of bean plants afflicted with bicarbonate-induced chlorosis. Botanical Gazette (Chicago, Ill.) 113, 373–392.
Crossref | GoogleScholarGoogle Scholar | open url image1

Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiology 129, 85–94.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Alcántara E, Pérez-Vicente R (2007) Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiology and Biochemistry 45, 293–301.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wegner LH, Zimmermann U (2004) Bicarbonate-induced alkalinization of the xylem sap in intact maize seedlings as measured in situ with a novel xylem pH probe. Plant Physiology 136, 3469–3477.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zribi K, Gharsalli M (2002) Effect of bicarbonate on growth and iron nutrition of pea. Journal of Plant Nutrition 25, 2143–2149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zuo Y, Ren L, Zhang F, Jiang RF (2007) Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil. Plant Physiology and Biochemistry 45, 357–364.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1