Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation

Yuriko Kobayashi A , Takashi Ikka A , Kazuhiko Kimura B , Orito Yasuda A and Hiroyuki Koyama A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

B School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan.

C Corresponding author. Email: koyama@gifu-u.ac.jp

Functional Plant Biology 34(11) 984-994 https://doi.org/10.1071/FP07133
Submitted: 25 May 2007  Accepted: 7 August 2007   Published: 1 November 2007

Abstract

The mechanism of lanthanum (La3+) toxicity on root growth of Arabidopsis was studied by physiological and genetic approaches using Landsberg erecta (Ler) × Columbia (Col) recombinant inbred lines (RILs) and other natural accessions. Quantitative trait locus (QTL) analyses revealed regulation of La3+ tolerance of the Ler × Col RILs by multiple genetic factors consisted of three significant QTLs and seven epistatic interacting loci pairs. The La content in the root tip was not correlated with La3+ tolerance in the RILs, indicating that the observed La3+ rhizotoxicity was not related to direct toxicity of La3+ in the symplast. The La3+ tolerance of root growth in the RILs was not correlated with Al3+ and Cu2+ tolerances, but was correlated with tolerances for other rare earth elements, including Gd3+, a known Ca2+ channel antagonist, and verapamil, a Ca2+ channel blocker. The genetic architecture of verapamil tolerance in root growth, which was identified by QTL analysis, was closely related to that of La3+ tolerance. La3+ tolerance and verapamil tolerance or Gd3+ tolerance in natural accessions of Arabidopsis also showed a positive correlation. These results indicate that the major La3+ toxicity on the root growth of Arabidopsis may involve its action as a Ca2+ channel antagonist.

Additional keywords: calcium, lanthanum tolerance, natural variation, QTL.


Acknowledgements

We thank Mr Randy Clark at Cornell University for comments and suggestions on the manuscript. This study was supported by Grants-in-Aid from the JSPS (No. 19380042 and 19380042) and the RITE Research Program to HK. We thank for RIKEN BRC (JA lines) and NASC (RI lines) who provide the accessions of Arabidopsis for this study.


References


Alcaide B, Almendros P (2002) The direct catalytic asymmetric aldol reaction. European Journal of Organic Chemistry 2002, 1595–1601.
Crossref | GoogleScholarGoogle Scholar | open url image1

Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an under exploited resource for plant genetics. Trends in Plant Science 5, 22–29.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Basten CJ, Weir BS, Zeng Z-B (1994) Zmap a QTL cartographer. Computing Strategies and Software 22, 65–66. open url image1

Beedle AM, Hamid J, Zamponi GW (2002) Inhibition of transiently expressed low- and high-voltage activated calcium channels by trivalent metal cations. Journal of Membrane Biology 187, 225–238.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137–144.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chase K, Adler FR, Lark KG (1997) Epistat: a computer program for identifying and testing interaction between pairs of quantitative trait loci. Theoretical and Applied Genetics 94, 724–730.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor–like gene family in Arabidopsis thaliana. Molecular Biology and Evolution 19, 1066–1082.
PubMed |
open url image1

Churchill AG, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.
PubMed |
open url image1

Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.): II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology 103, 695–702.
PubMed |
open url image1

Demidchik V, Bowen HC, Maathuis FJ, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth. Plant Journal 32, 799–808.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219, 167–175.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiology 128, 379–387.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Diatloff E, Smith FW, Asher CJ (1995) Rare earth elements and plant growth. I: Effects of lanthanum and cerium on root elongation of corn and mungbean. Journal of Plant Nutrition 18, 1963–1976. open url image1

Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H , et al. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hagenbeek D, Quatrano RS, Rock CD (2000) Trivalent ions activate abscisic acid inducible promoters through an ABI independent pathway in rice protoplasts. Plant Physiology 123, 1553–1560.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

He YW, Loh CS (2002) Induction of early bolting in Arabidopsis thaliana by triacontanol, cerium and lanthanum is correlated with increased endogenous concentration of isopentenyl adenosine. Journal of Experimental Botany 53, 505–512.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiology 132, 936–948.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J , et al. (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences USA 103, 9738–9743.
Crossref | GoogleScholarGoogle Scholar | open url image1

Huang JW, Grunes DL, Kochian LV (1994) Voltage-dependent Ca2+ influx into right-side-out plasma membrane vesicles isolated from wheat roots: characterization of a putative Ca2+ channel. Proceedings of the National Academy of Sciences USA 91, 3473–3477.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jiang C, Zeng Z (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127.
PubMed |
open url image1

Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant Journal 21, 225–229.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kinraide TB (1994) Use of a Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiology 106, 1583–1592.
PubMed |
open url image1

Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiology 118, 513–520.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al, H, and other cations on root elongation considered in terms of cell surface electrical potential. Plant Physiology 99, 1461–1468.
PubMed |
open url image1

Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proceedings of the National Academy of Sciences USA 89, 4967–4977.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kobayashi Y, Koyama H (2002) QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant & Cell Physiology 43, 1526–1533.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kobayashi Y, Furuta Y, Ohno T, Hara T, Koyama H (2005) Quantitative trait loci controlling aluminium tolerance in two accessions of Arabidopsis thaliana (Landsberg erecta and Cape Verde Islands). Plant, Cell & Environment 28, 1516–1524.
Crossref | GoogleScholarGoogle Scholar | open url image1

Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant Journal 4, 403–410.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55, 141–172.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin-Ca interaction may play an important role in proton rhizotoxicity. Journal of Experimental Botany 52, 361–368.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lazzaro MD, Thomson WW (1992) Endocytosis of lanthanum nitrate in the organic acid secreting trichomes of chickpea (Cicer arietinum L.). American Journal of Botany 79, 1113–1118.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lewis BD, Spalding EP (1998) Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction. Journal of Membrane Biology 162, 81–90.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li J, Zhu S, Song X, Shen Y, Chen H , et al. (2006) A rice glutamate receptor like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18, 340–349.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant Journal 4, 745–750.
Crossref | GoogleScholarGoogle Scholar | open url image1

Liu M, Hasenstein KH (2005) La 3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta 220, 658–666.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal 8, 457–463.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mlinar B, Enyeart JJ (1993) Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. Journal of Physiology 469, 639–652.
PubMed |
open url image1

Mundhara R, Rashid A (2002) Stimulation of shoot bud regeneration on hypocotyl of Linum seedlings, on a transient withdrawal of calcium: effect of calcium, cytokinin and thidiazuron. Plant Science 162, 211–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pang X, Wang DH, Xing XY, Peng A, Zhang FS, Li CJ (2002) Effect of La3+ on the activities of antioxidant enzymes in wheat seedlings under lead stress in solution culture. Chemosphere 47, 1033–1039.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Park BH, Kang BS, Bu SD, Noh TW, Jo W (1999) Lanthanum substituted bismuth titanate for use in nonvolatile memories. Nature 401, 682–684.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parker DR, Kinraide TB, Zelazny LW (1988) Aluminum speciation and phytotoxicity in dilute hydroxyaluminum solutions. Soil Science Society of America Journal 52, 438–444. open url image1

Payne KA, Bowen HC, Hammond JP, Hampton CR, Lynn JR, Mead A, Swarup K, Bennett MJ, White PJ, Broadley MR (2004) Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytologist 162, 535–548.
Crossref | GoogleScholarGoogle Scholar | open url image1

Polya GM, Klucis E, Haritou M (1987) Resolution and characterization of two soluble calcium dependent protein kinases from silver beet leaves. Biochimica et Biophysica Acta 931, 68–77. open url image1

Quesada V, García-Martínez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiology 130, 951–963.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002) Cloning and functional expression of human short TRP7, a candidate protein for store operated Ca2+ influx. Journal of Biological Chemistry 277, 12302–12309.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sasaki M, Yamamoto Y, Matsumoto H (1994) Putative Ca2+ channel of plasma membrane vesicles are not involved in the tolerance mechanism of aluminum in aluminum tolerant wheat (Triticum aestivum L.) cultivar. Soil Science and Plant Nutrition 40, 709–714. open url image1

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant Journal 37, 645–653.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187, 455–459.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shomer I, Novacky AJ, Pike SM, Yermiyahu U, Kinraide TB (2003) Electrical potentials of plant cell walls in response to the ionic environment. Plant Physiology 133, 411–422.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW (2001) Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Stern model. Plant & Cell Physiology 42, 538–545.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Soga K, Wakabayashi K, Kamisaki S, Hoson T (2005) Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean. Functional Plant Biology 32, 175–179.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

van Steveninck RFM, van Steveninck ME, Chescoe D (1976) Intracellular binding of lanthanum in root tips of barley (Hordeum vulgare) Protoplasma 90, 89–97.
Crossref | GoogleScholarGoogle Scholar | open url image1

Toda T, Koyama H, Hara T (1999) A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 63, 210–221.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tyler G (2004) Rare earth elements in soil and plant systems. Plant and Soil 267, 191–206.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yermiyahu U, Rytwo G, Brauer DK, Kinraide TB (1997) Binding and electrostatic attraction of lanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes. Journal of Membrane Biology 159, 239–252.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zeng Z-B (1993) Theoretical basis of separation of multiple linked gene effects in mapping quantitative traits loci. Proceedings of the National Academy of Sciences USA 90, 10972–10976.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zeng Z-B (1994) Precision mapping of quantitative traits loci. Genetics 136, 1457–1468.
PubMed |
open url image1