Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Fructan 1-exohydrolase is associated with flower opening in Campanula rapunculoides

Katrien Le Roy A , Rudy Vergauwen A , Veerle Cammaer A , Midori Yoshida B , Akira Kawakami B , André Van Laere A and Wim Van den Ende A C
+ Author Affiliations
- Author Affiliations

A Laboratorium voor Moleculaire Plantenfysiologie, Faculteit Wetenschappen, Departement Biologie, K.U.Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium.

B National Agricultural Research Center for Hokkaido Region, Hitsujigaoka, Sapporo 062-8555, Japan.

C Corresponding author. Email: wim.vandenende@bio.kuleuven.be

Functional Plant Biology 34(11) 972-983 https://doi.org/10.1071/FP07125
Submitted: 18 May 2007  Accepted: 11 September 2007   Published: 1 November 2007

Abstract

Fructans, typically reserve carbohydrates, may also fulfil other more specific roles in plants. It has been convincingly demonstrated that fructan hydrolysis contributes to osmoregulation during flower opening in the monocot species Hemerocallis. We report that a massive breakdown of inulin-type fructans in the petals of Campanula rapunculoides L. (Campanulaceae), associated with flower opening, is accompanied by a strong increase in fructan 1-exohydrolase (1-FEH; EC 3.2.1.153) activity and a decrease in sucrose : sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity. The data strongly suggest that the drastic change in the 1-FEH/1-SST activity ratio causes the degradation of inulin, contributing to the osmotic driving force involved in flower opening. All characterised plant FEHs are believed to be derived from tissues that store fructans as a reserve carbohydrate either temporarily (grasses and cereals) or over a longer term (dicot roots and tubers). Here, we focussed on a physiologically distinct tissue and used a reverse transcriptase–polymerase chain reaction based strategy to clone the 1-FEH cDNA from the Campanula petals. The translated cDNA sequence groups along with other dicot FEHs and heterologous expression revealed that the cDNA encodes a 1-FEH without invertase activity. 1-FEH expression analysis in petals correlates well with 1-FEH activity and inulin degradation patterns in vivo, suggesting that this enzyme fulfils an important role during flower opening.

Additional keywords: fructan 1-exohydrolase, fructan, heterologous expression, inulin, Pichia pastoris.


Acknowledgements

W. Van den Ende was a Postdoctdoral student supported by the Fund for Scientific Research, Flanders. We thank the Laboratory of Functional Biology, K.U.Leuven (Professor J. Winderickx), for the use of equipment and Dr Filip Rolland for critically reviewing this manuscript.


References


Asega AF, Carvalho MAM (2004) Fructan metabolising enzymes in rhizophores of Vernonia herbacea upon excision of aerial organs. Plant Physiology and Biochemistry 42, 313–319.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bancal P, Carpita CN, Gaudillére JP (1992) Differences in fructan accumulated in induced and field-grown wheat plants: an elongation-trimming pathway for their synthesis. New Phytologist 120, 313–321.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783–795.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bieleski RL (1993) Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiology 103, 213–219.
PubMed |
open url image1

Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16, 3285–3303.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chalmers J, Lidgett A, Cummings N, Cao YY, Forster J, Spangenberg G (2005) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnology Journal 3, 459–474.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chatterton NJ , Harrison PA , Thornley WR , Bennett JH (1993) Separation and quantification of fructan (inulin) oligomers by anion exchange chromatography. In ‘Inulin and inulin containing crops’. (Ed A Fuchs) pp. 93–99. (Elsevier, Amsterdam)

De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant, Cell & Environment 28, 432–443.
Crossref | GoogleScholarGoogle Scholar | open url image1

De Roover J, Van Laere A, Van den Ende W (1999) Effect of defoliation on fructan pattern and fructan metabolizing enzymes in chicory roots (Cichorium intybus). Physiologia Plantarum 106, 158–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Edelman J, Jefford T (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytologist 67, 517–531.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ernst M, Chatterton NJ, Harrison PA (1996) Purification and characterization of a new fructan series from species of Asteraceae. New Phytologist 132, 63–66.
Crossref | GoogleScholarGoogle Scholar | open url image1

Frehner M, Keller F, Wiemken A (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jeruzalem artichoke tubers (Helianthus tuberosus L.). Journal of Plant Physiology 116, 197–208. open url image1

Guerrand D, Prud’homme MP, Boucaud J (1996) Fructan metabolism in expanding leaves, mature leaf sheaths and mature leaf blades of Lolium perenne. Fructan synthesis, fructosyltransferase and invertase activities. New Phytologist 134, 205–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Halevy AH (1999) New flower crops. In ‘Perspectives on new crops and new uses’. (Ed J Janick) pp. 407–409. (ASHS Press: Alexandria)

Hammond JBW (1982) Changes in amylase activity during rose bud opening. Scientia Horticulturae 16, 283–289.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proceedings of the National Academy of Sciences of the United States of America 97, 8699–8704.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hendry GAF (1993) Evolutionary origins and natural functions of fructans — a climatological, biogeographic and mechanistic appraisal. New Phytologist 123, 3–14.
Crossref |
open url image1

Itaya NM, Buckeridge MS, Figueiredo-Ribeiro RCL (1997) Biosynthesis in vitro of high-molecular-mass fructan by cell-free extracts from tuberous roots of Viguiera discolor (Asteraceae). New Phytologist 136, 53–60.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ji XM, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure and expression of the two invertase gene families of rice. Journal of Molecular Evolution 60, 615–634.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ji XM, Van den Ende W, Schroeven L, Clerens S, Geuten K, Cheng S, Bennett J (2007) The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytologist 173, 50–62.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kaeser W (1983) Ultrastructure of storage cells in Jerusalem artichoke tubers (Helianthus tuberosus). Vesicle formation during inulin synthesis. Zeitschrift für Pflanzenphysiologie 111, 253–260. open url image1

Kawakami A, Yoshida M (2002) Molecular characterization of sucrose : sucrose 1-fructosyltransferase and sucrose : fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Bioscience, Biotechnology, and Biochemistry 66, 2297–2305.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kawakami A, Yoshida M, Van den Ende W (2005) Molecular cloning and functional analysis of a novel FEH from wheat (Triticum aestivum L.) preferentially degrading small branched graminans like bifurcose. Gene 358, 93–101.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koops A, Jonker H (1996) Purification and characterisation of the enzyme of fructan biosynthesis in tubers of Helianthus tuberosus Colombia. 2. Purification of sucrose : sucrose 1-fructosyltransferase and reconstitution of fructan synthesis in vitro with purified sucrose : sucrose 1-fructosyltransferase and fructan : fructan 1-fructosyltransferase. Plant Physiology 100, 1167–1175. open url image1

Koroleva OA, Tomos AD, Farrar JF, Gallagher J, Pollock CJ (2001) Carbon allocation and sugar status in individual cells of barley leaves affects expression of sucrose: fructan 6-fructosyltransferase gene. Annals of Applied Biology 138, 27–32.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kumar N, Srivastava GC, Dixit K, Mahajan A, Pal M (2007) Role of carbohydrates in flower bud opening in rose (Rosa hybrida L.). Journal of Horticultural Science & Biotechnology 82, 235–242. open url image1

Lasseur B, Lothier J, Djoumad A, De Coninck B, Smeekens S, Van Laere A, Morvan-Bertrand A, Van den Ende W, Prud’homme MP (2006) Molecular and functional characterization of a cDNA encoding fructan : fructan 6G-fructosyltransferase (6G-FFT)/fructan : fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). Journal of Experimental Botany 57, 2719–2734.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lasseur B, Lothier J, Morvan-Bertrand A, Escobar-Guttierez A, Humpheys MO, Prud’homme MP (2007) Impact of defoliation frequency on regrowth and carbohydrate metabolism in contrasting varieties of Lolium perenne. Functional Plant Biology 34, 418–430.
Crossref | GoogleScholarGoogle Scholar | open url image1

Le Roy K, Lammens W, Verhaest M, De Coninck B, Rabijns A, Van Laere A, Van den Ende W (2007) Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase 1 into a fructan 1-exohydrolase. Plant Physiology in press ,
PubMed |
open url image1

Lewis DH (1993) Nomenclature and diagrammatic representation of oligomeric fructans — a paper for discussion. New Phytologist 124, 583–594.
Crossref | GoogleScholarGoogle Scholar | open url image1

Livingston DP, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiology 116, 403–408.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lüscher M, Erdin C, Sprenger N, Hochstrasser U, Boller T, Wiemken A (1996) Inulin synthesis by a combination of purified fructosyltransferases from the tubers of Helianthus tuberosus. FEBS Letters 385, 39–42.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Marx SP, Nösberger J, Frehner M (1997) Seasonal variation of fructan-β-fructosidase (FEH) activity and characterization of a β-(2-1) linkage specific FEH from tubers of Jerusalem artichoke (Helianthus tuberosus). New Phytologist 135, 267–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Morvan-Bertrand A, Boucaud J, Le Saos J, Prud’homme MP (2001) Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta 213, 109–120.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

O’Donoghue EM, Eason JR, Somerfield SD, Ryan DA (2005) Galactosidases in opening, senescing and water-stressed Sandersonica aurantica flowers. Functional Plant Biology 32, 911–922.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pollock C, Farrar J, Tomos D, Gallagher J, Lu C, Koroleva O (2003) Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. Journal of Experimental Botany 54, 489–494.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Portes MT, Carvalho MAM (2006) Spatial distribution of fructans and fructan metabolizing enzymes in rhizophores of Vernonia herbacea (Vell.) Rusby (Asteraceae) in different developmental phases. Plant Science 170, 624–633.
Crossref | GoogleScholarGoogle Scholar | open url image1

Prud’homme MP, Gonzalez B, Billard J, Boucaud J (1992) Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of ryegrass (Lolium perenne L.) as affected by source/sink modification after cutting. Journal of Plant Physiology 140, 282–291. open url image1

Ramloch-Lorenz K, Knudsen S, Sturm A (1993) Molecular characterization of the gene for carrot cell wall β-fructosidase. Plant Journal 4, 545–554.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rutherford PP, Deacon AC (1972) β-Fructofuranosidases from roots of dandelion (Taraxacum officinale Weber). Biochemical Journal 126, 569–573.
PubMed |
open url image1

Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany 54, 525–531.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shiomi N (1989) Properties of fructosyltransferases involved in the synthesis of fructan in Liliaceous plants. Journal of Plant Physiology 134, 151–155. open url image1

Smouter H, Simpson RJ (1991) Fructan metabolism in leaves of Lolium rigidum Gaudin. II. Fructosyltransferase, invertase and fructan hydrolase activity. New Phytologist 119, 517–526.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van den Ende W, Van Laere A (1996a) De-novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose : sucrose 1-fructosyl transferase and fructan : fructan 1-fructosyl transferase) from chicory roots (Cichorium intybus L.). Planta 200, 335–342.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van den Ende W, Van Laere A (1996b) Fructan synthesizing and degrading activities in chicory roots (Cichorium intybus L.) during growth, storage and forcing. Journal of Plant Physiology 149, 43–50. open url image1

Van den Ende W, De Roover J, Van Laere A (1996) In vitro synthesis of fructofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan : fructan fructosyl transferase. Physiologia Plantarum 97, 346–352.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A (2000) Cloning and functional analysis of chicory root fructan 1-exohydrolase I (1-FEH I): a vacuolar enzyme derived from a cell wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. Plant Journal 24, 447–456.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami A (2003) Fructan 1-exohydrolase: β(2,1) trimmers during graminan biosynthesis in stems of wheat (Triticum aestivum L.)? Purification, characterization, mass mapping and cloning of two 1-FEH isoforms. Plant Physiology 131, 621–631.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van den Ende W, De Coninck B, Van Laere A (2004) Plant fructan exohydrolases: a role in signaling and defense? Trends in Plant Science 9, 523–528.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van den Ende W, Clerens S, Vergauwen R, Boogaerts D, Le Roy K, Arckens L, Van Laere A (2006) Cloning and functional analysis of a high DP 1-FFT from Echinops ritro. Comparison of the native and recombinant enzymes. Journal of Experimental Botany 57, 775–789.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant, Cell & Environment 25, 803–815.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vergauwen R, Van den Ende W, Van Laere A (2000) The role of fructans in flowering of Campanula rapunculoides. Journal of Experimental Botany 51, 1261–1266.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Verhaest M, Lammens W, Le Roy K, De Ranter C, Van Laere A, Rabijns A, Van den Ende W (2007) Insights into the fine architecture of the active site of chicory Fructan 1- Exohydrolase: 1-kestose as substrate versus sucrose as inhibitor. New Phytologist 174, 90–100.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends in Plant Science 10, 316–323.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang C, Van den Ende W, Tillberg JE (2000) Fructan accumulation induced by nitrogen deficiency in barley leaves correlates with the level of sucrose : fructan 6-fructosyltransferase mRNA. Planta 211, 701–707.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yamada K, Ito M, Oyama T, Nakada M, Maeseka M, Yamaki S (2007) Analysis of sucrose metabolism during petal growth of cut roses. Postharvest Biology and Technology 43, 174–177.
Crossref | GoogleScholarGoogle Scholar | open url image1