Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions

Jose I. García-Plazaola A , Shizue Matsubara B and C. Barry Osmond C D
+ Author Affiliations
- Author Affiliations

A Department of Plant Biology and Ecology, UPV/EHU, Apdo. 644, 48080 Bilbao, Spain.

B Institut Phytosphäre (ICG3), Forschungszentrum Jülich, 52425 Jülich, Germany.

C School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia.

D Corresponding author. Email: barry.osmond@anu.edu.au

Functional Plant Biology 34(9) 759-773 https://doi.org/10.1071/FP07095
Submitted: 18 April 2007  Accepted: 8 June 2007   Published: 30 August 2007

Abstract

Several xanthophyll cycles have been described in photosynthetic organisms. Among them, only two are present in higher plants: the ubiquitous violaxanthin (V) cycle, and the taxonomically restricted lutein epoxide (Lx) cycle, whereas four cycles seem to occur in algae. Although V is synthesised through the β-branch of the carotenoid biosynthetic pathway and Lx is the product of the α-branch; both are co-located in the same sites of the photosynthetic pigment-protein complexes isolated from thylakoids. Both xanthophylls are also de-epoxidised upon light exposure by the same enzyme, violaxanthin de-epoxidase (VDE) leading to the formation of zeaxanthin (Z) and lutein (L) at comparable rates. In contrast with VDE, the reverse reaction presumably catalysed by zeaxanthin epoxidase (ZE), is much slower (or even inactive) with L than with antheraxanthin (A) or Z. Consequently many species lack Lx altogether, and although the presence of Lx shows an irregular taxonomical distribution in unrelated taxa, it has a high fidelity at family level. In those plants which accumulate Lx, variations in ZE activity in vivo mean that a complete Lx-cycle occurs in some (with Lx pools being restored overnight), whereas in others a truncated cycle is observed in which VDE converts Lx into L, but regeneration of Lx by ZE is extremely slow. Accumulation of Lx to high concentrations is found most commonly in old leaves in deeply shaded canopies, and the Lx cycle in these leaves is usually truncated. This seemingly anomalous situation presumably arises because ZE has a low but finite affinity for L, and because deeply shaded leaves are not often exposed to light intensities strong enough to activate VDE. Notably, both in vitro and in vivo studies have recently shown that accumulation of Lx can increase the light harvesting efficiency in the antennae of PSII. We propose a model for the truncated Lx cycle in strong light in which VDE converts Lx to L which then occupies sites L2 and V1 in the light-harvesting antenna complex of PSII (Lhcb), displacing V and Z. There is correlative evidence that this photoconverted L facilitates energy dissipation via non-photochemical quenching and thereby converts a highly efficient light harvesting system to an energy dissipating system with improved capacity to engage photoprotection. Operation of the α- and β-xanthophyll cycles with different L and Z epoxidation kinetics thus allows a combination of rapidly and slowly reversible modulation of light harvesting and photoprotection, with each cycle having distinct effects. Based on the patchy taxonomical distribution of Lx, we propose that the presence of Lx (and the Lx cycle) could be the result of a recurrent mutation in the epoxidase gene that increases its affinity for L, which is conserved whenever it confers an evolutionary advantage.

Additional keywords: antheraxanthin, α-carotene, de-epoxidase, epoxidase, lutein, lutein epoxide, non-photochemical quenching, photoprotection, violaxanthin, xanthophyll cycles, zeaxanthin.


Acknowledgements

Work in Bilbao was supported in part by research project UPV 0018.310–135331/2001 and research project BFU 2004–02876/BFI from the MEC of Spain. Recent research by SM owes much to encouragement from Drs Uli Schurr (Jülich), Heinrich Krause (Düsseldorf) and especially to collaborations with Roberto Bassi (Verona) and Tomas Morosinotto (Padova). The work of CBO in Canberra has been supported by Drs Britta Förster and Barry Pogson. We are grateful to Dr Adam Gilmore his early guidance and assistance in this research. This review was initially stimulated by the Outstanding Plant Physiologist Award 2004, from the New Zealand Society of Plant Physiologists to Dr Ralph Bungard in recognition of his work on the lutein epoxide cycle. Although in the end he was unable to contribute actively to the review, we are grateful for his comments on the manuscript.


References


Abadía A, Gil E, Morales F, Montañés L, Montserrat G, Abadía J (1996) Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica E.H. del Villar): photosynthetic characteristics and nutrient composition. Plant, Cell & Environment 19, 685–694.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bassi R, Caffarri S (2000) Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynthesis Research 64, 243–256.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bishop NI (1996) The β,ϵ-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. Journal of Photochemistry and Photobiology. B, Biology 36, 279–283.
Crossref | GoogleScholarGoogle Scholar | open url image1

Björkman O (1981) Responses to different quantum flux densities. In ‘Encyclopedia of plant physiology. Vol. 12A. Physiological plant ecology I: responses to the physical environment’. (Eds OL Lange, PS Nobel, CB Osmond, H Ziegler) pp. 57–107. (Springer-Verlag: New York)

Bouvier F, d’Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B (1996) Xanthophyll biosynthesis. Journal of Biological Chemistry 271, 28861–28867.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Britton G , Liaaen-Jensen S , Pfander H (2004) ‘Carotenoids handbook.’ (Birkhäuser Verlag: Basel, Switzerland)

Brugnoli E, Björkman O (1992) Chloroplast movements: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynthesis Research 32, 23–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proceedings of the National Academy of Sciences USA 96, 1135–1139.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. Journal of Biological Chemistry 276, 35924–35933.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cardini F, Pucci S, Calamassi R (2006) Quantitative variations of individual carotenoids in relationship with the leaflet development of six species of the genus Ceratozamia (Cycads). Journal of Plant Physiology 163, 128–140.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chow WS , Aro E-M (2005) Photoinactivation and mechanisms of recovery. In ‘Photosystem II: the light-driven water/plastoquinone oxidoreductase. Advances in photosynthesis and respiration. Vol. 19’. (Eds T Wydrzynski, K Satoh) pp. 627–648. (Springer-Verlag: Berlin)

Croce R, Weiss S, Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. Journal of Biological Chemistry 274, 29613–29623.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49, 557–583.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Demmig B, Winter K, Krüger A, Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves; a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiology 84, 218–224.
PubMed |
open url image1

Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology 43, 599–626.
Crossref | GoogleScholarGoogle Scholar | open url image1

Demmig-Adams B , Adams WW , Ebbert V , Logan BA (1999) Ecophysiology of the xanthophyll cycle. In ‘The Photochemistry of carotenoids’. (Eds HA Frank, AJ Young, G Britton, RJ Cogdell) pp. 245–269. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Edelenbos M, Christensen LP, Grevsen K (2001) HPLC determination of chlorophyll and carotenoid pigments in processed green pea cultivars (Pisum sativum L.). Journal of Agricultural and Food Chemistry 49, 4768–4774.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Esteban R, Jiménez ET, Jiménez MS, Morales D, Hormaetxe K, Becerril JM, García-Plazaola JI (2007) Dynamics of violaxanthin and lutein epoxide xanthophyll cycles in Lauraceae tree species under field conditions. Tree Physiology 27, 1407–1414.
PubMed |
open url image1

Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytologist 158, 509–525.
Crossref | GoogleScholarGoogle Scholar | open url image1

Finazzi G, Johnson GN, Dall’Osto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proceedings of the National Academy of Sciences USA 101, 12375–12380.
Crossref | GoogleScholarGoogle Scholar | open url image1

Firn RD , Jones CG (2004) The evolution of plant biochemistry and the implications for physiology. In ‘The evolution of plant physiology: from whole plants to ecosystems’. (Eds AR Hemsley, I Poole) pp. 67–83. (Elsevier Academic Press: London)

Gandul-Rojas B, Cepero MR-L, Mínguez-Mosquera MI (1999) Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina. Journal of Agricultural and Food Chemistry 47, 2207–2212.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

García-Plazaola JI, Becerril JM (2001) Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Australian Journal of Plant Physiology 28, 225–232. open url image1

García-Plazaola JI, Errasti E, Hernández A, Becerril JM (2002) Occurrence and operation of the lutein epoxide cycle in Quercus species. Functional Plant Biology 29, 1075–1080.
Crossref | GoogleScholarGoogle Scholar | open url image1

García-Plazaola JI, Hernández A, Olano JM, Becerril JM (2003) The operation of the lutein epoxide cycle correlates with energy dissipation. Functional Plant Biology 30, 319–324.
Crossref | GoogleScholarGoogle Scholar | open url image1

García-Plazaola JI, Hormaetxe K, Hernández A, Olano JM, Becerril JM (2004) The lutein epoxide cycle in vegetative buds of woody plants. Functional Plant Biology 31, 815–823.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gilmore AM (2001) Xanthophyll cycle-dependent nonphotochemical quenching in photosystem II: Mechanistic insight gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and or lutein. Photosynthesis Research 67, 89–101.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gilmore AM, Ball MC (2000) Protection and storage of chlorophyll in overwintering evergreens. Proceedings of the National Academy of Sciences USA 97, 11098–11101.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gilmore AM, Yamamoto HY (2001) Time-resolution of the antheraxanthin- and ΔpH-dependent chlorophyll a fluorescence components associated with photosystem II energy dissipation in Mantoniella squamata. Photochemistry and Photobiology 74, 291–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goss R (2003) Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 217, 801–812.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205, 613–621.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiology 112, 1631–1640.
PubMed |
open url image1

Grotz B, Molnár P, Stransky H, Hager A (1999) Substrate specificity and functional aspects of violaxanthin-de-epoxidase, an enzyme of the xanthophyll cycle. Journal of Plant Physiology 154, 437–446. open url image1

Hager A (1980) The reversible light-induced conversions of xanthophylls in the chloroplast. In ‘Pigments in plants’. (Ed. FC Czygan) pp. 57–79. (Fischer: Stuttgart, Germany)

Harker M, Hirschberg J (1998) Molecular biology of carotenoid biosynthesis in photosynthetic organisms. Methods in Enzymology 297, 244–263. open url image1

Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences USA 96, 8762–8767.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochimica et Biophysica Acta 1482, 84–91.
PubMed |
open url image1

Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology 4, 210–218.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horton P (1983) Relationships between electron transport and carbon assimilation; simultaneous measurement of chlorophyll fluorescence, transthylakoid pH gradient and O2 evolution in isolated chloroplasts. Proceedings of the Royal Society of London. Series B. Biological Sciences 217, 405–416. open url image1

Horton P, Hague A (1988) Studies on the induction of chlorophyll fluorescence in barley protoplasts. IV. Resolution of non-photochemical quenching. Biochimica et Biophysica Acta 932, 107–115.
Crossref | GoogleScholarGoogle Scholar | open url image1

Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. Journal of Experimental Botany 56, 365–373.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 655–684.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 355, 1361–1370.
Crossref | GoogleScholarGoogle Scholar | open url image1

Horton P, Wentworth M, Ruban A (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Letters 579, 4201–4206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jahns P, Wehner A, Paulsen H, Hobe S (2001) De-epoxidation of violaxanthin after reconstitution into different carotenoid binding sites of light-harvesting complex II. Journal of Biological Chemistry 276, 22154–22159.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochimica et Biophysica Acta 1184, 1–19.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. Proceedings of the National Academy of Sciences USA 103, 3474–3479.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kirschbaum MUF, Pearcy RW (1988) Concurrent measurements of O2 and CO2 exchange during lightflecks in Alocasia macrorrhiza (L.) G. Don. Planta 174, 527–533.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kolber Z, Klimov D, Ananyev G, Rascher U, Berry J, Osmond B (2005) Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of PSII in terrestrial vegetation. Photosynthesis Research 84, 121–129.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynthesis Research 60, 151–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313–349.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krause GH, Koroleva OY, Dalling JW, Winter K (2001) Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell & Environment 24, 1345–1352.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kruk J (2005) Occurrence of chlorophyll precursors in leaves of cabbage heads − the case of natural etiolation. Journal of Photochemistry and Photobiology B: Biology 80, 187–194.
Crossref | GoogleScholarGoogle Scholar | open url image1

Külheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kull D, Pfander H (1995) Isolation and identification of carotenoids from the petals of rape (Brassica napus). Journal of Agricultural and Food Chemistry 43, 2854–2857.
Crossref | GoogleScholarGoogle Scholar | open url image1

Latowski D, Kostecka A, Strzalka K (2000) Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes. Biochemical Society Transactions 28, 810–812.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Latowski D, Grzyb J, Strzalka K (2004) The xanthophyll cycle – molecular mechanism and physiological significance. Acta Physiologiae Plantarum 26, 197–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li X-P, Phippard A, Pasari J, Niyogi KK (2002a) Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Functional Plant Biology 29, 1131–1139.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li X-P, Gilmore AM, Niyogi KK (2002b) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. Journal of Biological Chemistry 277, 33590–33597.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. Journal of Biological Chemistry 279, 22866–22874.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light harvesting complex at 2.72 Å resolution. Nature 428, 287–292.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Llorens L, Aranda X, Abadía A, Fleck I (2002) Variations in Quercus ilex chloroplast pigment content during summer stress: involvement in photoprotection according to principal component analysis. Functional Plant Biology 29, 81–88.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proceedings of the National Academy of Sciences USA 96, 8784–8789.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lu WH, Haynes K, Wiley E, Clevidence B (2001) Carotenoid content and color in diploid potatoes. Journal of the American Society for Horticultural Science 126, 722–726. open url image1

Ludlow MM, Björkman O (1984) Paraheliotropic leaf movements in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161, 505–518.
Crossref | GoogleScholarGoogle Scholar | open url image1

Matsubara S, Gilmore AM, Osmond CB (2001) Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii. Australian Journal of Plant Physiology 28, 793–800. open url image1

Matsubara S, Gilmore AM, Ball MC, Anderson JM, Osmond CB (2002) Sustained downregulation of photosystem II in mistletoes during winter depression of photosynthesis. Functional Plant Biology 29, 1157–1169.
Crossref | GoogleScholarGoogle Scholar | open url image1

Matsubara S, Morosinotto T, Bassi R, Christian A-L, Fischer-Schliebs E , et al. (2003) Occurrence of the lutein-epoxide cycle in mistletoes of the Loranthaceae and Viscaceae. Planta 217, 868–879.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matsubara S, Naumann M, Martin R, Nichol C, Rascher U, Morosinotto T, Bassi R, Osmond B (2005) Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may ‘lock in’ lutein-based photoprotection during acclimation to strong light. Journal of Experimental Botany 56, 461–468.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matsubara S, Morosinotto T, Osmond B, Bassi R (2007) Short- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes. Plant Physiology 144, 926–941.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matus Z, Molnár P, Szabó LG (1993) Main carotenoids in pressed seeds (Cucurbitae semen) of oil pumkin (Cucurbita pepo convar. pepo var. styriaca). Acta Pharmaceutica Hungarica 63, 247–256.
PubMed |
open url image1

Morosinotto T, Baronio R, Bassi R (2002) Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. Journal of Biological Chemistry 277, 36913–36920.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morosinotto T, Caffarri S, Dall’Osto L, Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiologia Plantarum 119, 347–354.
Crossref | GoogleScholarGoogle Scholar | open url image1

Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125, 1558–1566.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Munné-Bosch S, Peñuelas J, Asensio D, Llusià J (2004) Airborne ethylene may alter antioxidant protection and reduced tolerance of Holm oak to heat and drought stress. Plant Physiology 136, 2937–2947.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Niinemets Ü, Bilger W, Kull O, Tennhunen JD (1998) Acclimation to high irradiance in temperate trees in the field: changes in xanthophyll pool size and photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment 21, 1205–1218.
Crossref | GoogleScholarGoogle Scholar | open url image1

Niinemets Ü, Kollist H, García-Plazaola JI, Hernández A, Becerril JM (2003) Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate tress? Plant, Cell & Environment 26, 1787–1801.
Crossref | GoogleScholarGoogle Scholar | open url image1

Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology 50, 333–359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences USA 94, 14162–14167.
Crossref | GoogleScholarGoogle Scholar | open url image1

Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10, 1121–1134.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Orset S, Young AJ (1999) Low-temperature-induced synthesis of a-carotene in the microalga Dunaliella salina (Chlorophyta). Journal of Phycology 35, 520–527.
Crossref | GoogleScholarGoogle Scholar | open url image1

Osmond CB , Anderson JM , Ball MC , Egerton JJG (1999) Compromising efficiency: the molecular ecology of light resource utilisation in terrestrial plants. In ‘Advances in physiological plant ecology’. (Eds MC Press, JC Scholes, MG Barker) pp. 1–24. (Blackwell: Oxford)

Pearcy RW (1988) Photosynthetic utilization of lightflecks by understory plants. Australian Journal of Plant Physiology 15, 223–238. open url image1

Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology 41, 421–453.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peng C-L, Lin Z-F, Su Y-Z, Lin G-Z, Dou H-Y, Zhao C-X (2006) The antioxidative functions of lutein: electron spin resonance studies and chemical detection. Functional Plant Biology 33, 839–846.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pfündel E, Renganathan M, Gilmore AM, Yamamoto HY, Dilley RA (1994) Intrathylakoid pH in isolated pea chloroplasts as probed by violaxanthin de-epoxidation. Plant Physiology 106, 1647–1658.
PubMed |
open url image1

Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. The Plant Cell 8, 1627–1639.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pogson BJ, Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences. 355, 1395–1403.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pogson BJ, Niyogi KK, Björkman O, DellaPenna D (1998) Altered xanthophyll composition adversely affect chlorophyll accumulation and non-photochemical quenching in Arabidopsis mutants. Proceedings of the National Academy of Sciences USA 95, 13324–13329.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rabinowitch HD, Budowski P, Kedar N (1975) Carotenoids and epoxide cycles in mature-green tomatoes. Planta 122, 91–97.
Crossref | GoogleScholarGoogle Scholar | open url image1

Raniello R, Lorenti M, Brunet C, Buia MC (2006) Photoacclimation of the invasive alga Caulerpa racemosa var. Cylindracea to depth and daylight patterns and a putative new role for siphonaxanthin. Marine Ecology 27, 20–30.
Crossref | GoogleScholarGoogle Scholar | open url image1

Razungles AJ, Babic I, Sapisd JC, Bayonove CL (1996) Particular behaviour of epoxy xanthophylls during veraison and maturation of grape. Journal of Agricultural and Food Chemistry 44, 3821–3825.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rmiki NE, Brunet C, Cabioch J, Lemoine Y (1996) Xanthophyll-cycle and photosynthetic adaptation to environment in macro- and microalgae. Hydrobiologia 326–327, 407–413.
Crossref | GoogleScholarGoogle Scholar | open url image1

Robinson SA, Lovelock CE, Osmond CB (1993) Wax as a mechanism for protection against photoinhibition – a study of Cotyledon orbiculata. Botanica Acta 106, 307–312. open url image1

Ruban AV, Horton P (1995) An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts and leaves of spinach. Plant Physiology 108, 721–726.
PubMed |
open url image1

Schiefthaler U, Russell AW, Bolhàr-Nordenkampf HR, Critchley C (1999) Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. Australian Journal of Plant Physiology 26, 485–494. open url image1

Snyder AM, Clark BM, Robert B, Ruban AV, Bungard RA (2004) Carotenoid specificity of light-harvesting complex II binding sites; occurrence of 9-cis-viloaxanthin in the neoxanthin-binding site in the parasitic angiosperm Cuscuta reflexa. Journal of Biological Chemistry 279, 5162–5168.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Snyder AM, Clark BM, Bungard RA (2005) Light-dependent conversion of carotenoids in the parasitic angiosperm Cuscuta reflexa L. Plant, Cell & Environment 28, 1326–1333.
Crossref | GoogleScholarGoogle Scholar | open url image1

Strand A, Kvernberg K, Karlsen AM, Liaaen-Jensen S (2000) Geometrical E/Z isomers of (6R)- and (7S)- neoxanthin and biological implications. Biochemical Systematics and Ecology 28, 443–455.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stransky H, Hager A (1970) The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. VI. Chemosystematic study. Archiv fur Mikrobiologie 73, 315–323.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tai CY, Chen BH (2000) Analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by various treatments. Journal of Agricultural and Food Chemistry 48, 5962–5968.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thayer SS, Björkman O (1990) Leaf xanthophylls content and composition in sun and shade determined by HPLC. Photosynthesis Research 23, 331–343.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thiele A, Krause GH, Winter K (1998) In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Australian Journal of Plant Physiology 25, 185–195. open url image1

Verhoeven AS, Adams WW, Demmig-Adams B, Croce R, Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca minor. Plant Physiology 120, 727–737.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Watanabe K, Takahashi B (1996) Chlorophyll and carotenoid pigments in green- and yellow-fleshed kiwifruit during fruit development and storage. Journal of the Japanese Society for Horticultural Science 68, 1038–1043. open url image1

Watling JR, Robinson SA, Woodrow IE, Osmond CB (1997) Responses of rainforest understorey plants to excess light during sunflecks. Australian Journal of Plant Physiology 24, 17–25. open url image1

Watson TL, Close DC, Davidson NJ, Davies NW (2004) Pigment dynamics during cold-induced photoinhibition of Acacia melanoxylon. Functional Plant Biology 31, 481–489.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wehner A, Storf S, Jahns P, Schmid VHR (2004) De-epoxidation of violaxanthin in light-harvesting complex I proteins. Journal of Biological Chemistry 279, 26823–26829.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to energy dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 894, 198–208.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wingerath T, Stahl W, Kirsch D, Kaufmann R, Sies H (1996) Fruit juice carotenol fatty acid esters and carotenoids as identified by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Journal of Agricultural and Food Chemistry 44, 2006–2013.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochimica et Biophysica Acta 267, 538–543.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Archives of Biochemistry and Biophysics 190, 514–522.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yamamoto HY, Nakayama TOM, Chichetser CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Archives of Biochemistry and Biophysics 97, 168–173.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yen WJ, Chen BH (1995) Isolation of xanthophylls from Taiwanese orange peels and their effects on the oxidation stability of soybean oil. Food Chemistry 53, 417–425.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Journal of Experimental Botany 55, 1167–1175.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1