Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Location, location, location: surveying the intracellular real estate through proteomics in plants

A. Harvey Millar

This review originates from the Peter Goldacre Award 2003 of the Australian Society of Plant Scientists, received by the author.

+ Author Affiliations
- Author Affiliations

Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia. Corresponding author; email: hmillar@cyllene.uwa.edu.au

Functional Plant Biology 31(6) 563-582 https://doi.org/10.1071/FP04034
Submitted: 4 February 2004  Accepted: 16 March 2004   Published: 23 June 2004

Abstract

Knowledge of cellular compartmentation is critical to an understanding of many aspects of biological function in plant cells but it remains an under-emphasised concept in the use of and investment in plant functional genomic tools. The emerging effort in plant subcellular proteomics is discussed, and the current datasets that are available for a series of organelles and cellular membranes isolated from a range of plant species are noted. The benefit of knowing subcellular location in determining the role of proteins of unknown function is considered alongside the challenges faced in this endeavour. These include clear problems in dealing with contamination during the isolation of subcellular compartments, the meaningful integration of these datasets once completed to assemble a jigsaw of the cellular proteome as a whole, and the use of the wider literature in supplementing this proteomic discovery effort.

Keywords: mass spectrometry, membranes, organelles, plants, proteomics, subcellular fractionation.


Acknowledgments

AHM is an Australian Research Council QEII Research Fellow and also thanks the Australian Research Council for grants through the Discovery Program to fund this research.


References


Andon NL, Hollingworth S, Koller A, Greenland AJ, Yates JR, Haynes PA (2002) Proteomic characterisation of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2, 1156–1168.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. The Plant Journal 36, 652–663.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bardel J, Louwagie M, Jaquinod M, Jourdain A, Luche S, Rabilloud T, Macherel D, Garin J, Bourguignon J (2002) A survey of the plant mitochondrial proteome in relation to development. Proteomics 2, 880–898.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bardy N, Carrasco A, Galaud JP, Pont-Lezica R, Canut H (1998) Free-flow electrophoresis for fractionation of Arabidopsis thaliana membranes. Electrophoresis 19, 1145–1153.
PubMed |
open url image1

Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiology 132, 568–577.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Burgess RR, Thompson NE (2002) Advances in gentle immunoaffinity chromatography. Current Opinion in Biotechnology 13, 304–308.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Calikowski TT, Meulia T, Meier I (2003) A proteomic study of the Arabidopsis nuclear matrix. Journal of Cellular Biochemistry 90, 361–378.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate–glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry 278, 46 869–46 877.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chew O, Lister R, Qbadou S, Heazlewood JL, Soll J, Schleiff E, Millar AH, Whelan J (2004) A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Letters 557, 109–114.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu XL, Knox JP, Bolwell P, Slabas AR (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23, 1754–1765.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualisation of subcellular structures in cells of Arabidopsis at a high frequency. Proceedings of the National Academy of Sciences USA 97, 3718–3723.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dreger M (2003) Subcellular proteomics. Mass Spectrometry Reviews 22, 27–56.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol–anchored membrane proteins. Molecular and Cellular Proteomics 2, 1261–1270.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Emanuelsson O (2002) Predicting protein subcellular localisation from amino acid sequence information. Briefing in Bioinformatics 3, 361–376. open url image1

Emanuelsson O, von Heijne G (2001) Prediction of organellar targeting signals. Biochimica et Biophysica Acta 1541, 114–119.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. The Plant Cell 15, 1507–1523.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eubel H, Jansch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. supercomplexes and a unique composition of complex II. Plant Physiology 133, 274–286.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Faraday CD, Spanswick RM, Bisson MA (1996) Plasma membrane isolation from freshwater and salt-tolerant species of Chara: antibody cross-reactions and phosphohydrolase activities. Journal of Experimental Botany 47, 589–594.
PubMed |
open url image1

Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiology 133, 1935–1946.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Molecular and Cellular Proteomics 2, 325–345.
PubMed |
open url image1

Friso G, Ytterberg AJ, Giacomelli L, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts; new proteins, functions and a plastid proteome database. The Plant Cell 16, 478–499.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Froehlich JE, Wilkerson CG, Ray K, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilising alternatives to traditional two-dimensional electrophoresis. Journal of Proteome Research 2, 413–425.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant and Cell Physiology 43, 689–696.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fukao Y, Hayashi M, Hara-Nishimura I, Nishimura M (2003) Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana. Plant and Cell Physiology 44, 1002–1012.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goff SA, Ricke D, Lan T-H, Presting G, Wang R, , et al . (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Guo T, Hua S, Ji X, Sun Z (2004) DBSubLoc: database of protein subcellular localisation. Nucleic Acids Research 32, D122–D124.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hamdan M, Righetti PG (2002) Modern strategies for protein quantification in proteome analysis: advantages and limitations. Mass Spectrometry Reviews 21, 287–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Haslam RP, Downie AL, Raveton M, Gallardo K, Job D, Pallett KE, John P, Parry MAJ, Coleman JOD (2003) The assessment of enriched apoplastic extracts using proteomic approaches. The Annals of Applied Biology 143, 81–91. open url image1

Heazlewood JL, Millar AH (2003) Integrated plant proteomics: putting the green genomes to work. Functional Plant Biology 30, 471–482.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heazlewood JL, Howell KA, Millar AH (2003a) Mitochondrial complex I form Arabidopsis and rice: orthologs of mammalian and funal components coupled with plant-specific subunits. Biochimica et Biophysica Acta 1604, 159–169.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Heazlewood JL, Howell KA, Whelan J, Millar AH (2003b) Towards an analysis of the rice mitochondrial proteome. Plant Physiology 132, 230–242.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Heazlewood JL, Whelan J, Millar AH (2003c) The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1FO ATP synthase. FEBS Letters 540, 201–205.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signalling and regulatory components, provides assessment of targeting prediction programs and points to plant specific mitochondrial proteins. The Plant Cell 16, 241–256.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Herald VL, Heazlewood JL, Day DA, Millar AH (2003) Proteomic identification of divalent metal cation binding proteins in plant mitochondria. FEBS Letters 537, 96–100.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hochholdinger F, Guo L, Schnable PS (2004) Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize. The Plant Journal 37, 199–208.
PubMed |
open url image1

Hoffmann-Benning S, McIntosh DA, Gage L, Kende H, Zeevaart JAD (2002) Comparison of peptides in the phloem sap of flowering and non-flowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption / ionisation time-of-flight mass spectrometry. Planta 216, 140–147.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huber LA, Pfaller K, Vietor I (2003) Organelle proteomics: implications for subcellular fractionation in proteomics. Circulation Research 92, 962–968.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localisation in budding yeast. Nature 425, 686–691.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jonsson AP (2001) Mass spectrometry for protein and peptide characterisation. Cellular and Molecular Life Sciences 58, 868–884.
PubMed |
open url image1

Jung E, Heller M, Sanchez JC, Hochstrasser DF (2000) Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis 21, 3369–3377.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Komatsu S, Kojima K, Suzuki K, Ozaki K, Higo K (2004) Rice proteome database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Nucleic Acids Research 32, D388–D392.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiology 127, 1694–1710.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Maltman DJ, Simon WJ, Wheeler CH, Dunn MJ, Wait R, Slabas AR (2002) Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis). Electrophoresis 23, 626–639.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Millar AH, Heazlewood JL (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiology 131, 443–453.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiology 127, 1711–1727.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mithoefer A, Mueller B, Wanner G, Eichacker LA (2002) Identification of defence-related cell wall proteins in Phytophthora sojae-infected soybean roots by ESI–MS / MS. Molecular Plant Pathology 3, 163–166.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilised metal ion affinity chromatography and mass spectrometry. Molecular and Cellular Proteomics 2, 1234–1243.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochimica et Biophysica Acta 1541, 54–63.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. The Plant Cell 12, 319–341.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peltier J-B, Emanuelsson O, Kalume DE, Ytterberg J, Friso G , et al . (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. The Plant Cell 14, 211–236.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Prime TA, Sherrier DJ, Mahon P, Packman LC, Dupree P (2000) A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis 21, 3488–3499.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rial DV, Lombardo VA, Ceccarelli EA, Ottado J (2002) The import of ferredoxin-NADP+ reductase precursor into chloroplasts is modulated by the region between the transit peptide and the mature core of the protein. European Journal of Biochemistry 269, 5431–5439.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Richly E, Chinnery PF, Leister D (2003) Evolutionary diversification of mitochondrial proteomes: implications for human disease. Trends in Genetics 19, 356–362.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rochester CP, Kjellbom P, Andersson B, Larsson C (1987) Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: identification of cerebroside as a major component. Archives of Biochemistry and Biophysics 255, 385–391.
PubMed |
open url image1

Saalbach G, Erik P, Wienkoop S (2002) Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics 2, 325–337.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Santoni V, Doumas P, Rouquie D, Mansion M, Rabilloud T, Rossignol M (1999) Large scale characterisation of plant plasma membrane proteins. Biochimie 81, 655–661.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Santoni V, Vinh J, Pflieger D, Sommerer N, Maurel C (2003) A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. The Biochemical Journal 373, 289–296.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. Journal of Biological Chemistry 277, 8354–8365.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R , et al . (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proceedings of the National Academy of Sciences USA 100, 13207–13212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Simpson JC, Pepperkok R (2003) Localising the proteome. Genome Biology 4, 240.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. The Plant Journal 32, 891–904.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tanaka N, Fujita M, Handa H, Murayama S, Uemura M , et al . (2004) Proteomics of the rice cell: systematic identification of the protein population in subcellular compartments. Molecular Genetics and Genomics In press ,
Crossref | GoogleScholarGoogle Scholar | open url image1

The Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Werhahn W, Braun HP (2002) Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23, 640–646.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wienkoop S, Saalbach G (2003) Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology 131, 1080–1090.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhou J, Weiner H (2001) The N-terminal portion of mature aldehyde dehydrogenase affects protein folding and assembly. Protein Science 10, 1490–1497.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1