10.1071/FP24008

Functional Plant Biology

Supplementary Material

Coordination between water relations strategy and carbon investment in leaf and stem in six fruit tree species

Ismael Piña^A, Marco Garrido-Salinas^{B,*}, Oscar Seguel^C, Ismael Opazo^D, Carlos Faúndez-Urbina^E, Nicolás Verdugo-Vásquez^F, and Emilio Villalobos-Soublett^G

^APrograma de Magister en Manejo de Suelo y Aguas, Escuela de Postgrado Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile.

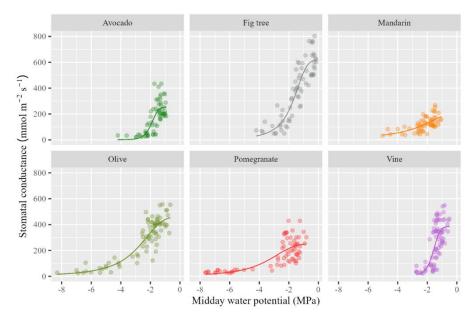
^BDepartamento de Agronomía, Facultad de Ciencias, Universidad de la Serena, Avenida La Paz 1108, Ovalle 1842646, Chile.

^cDepartamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, La Pintana, Santiago 8820808, Chile.

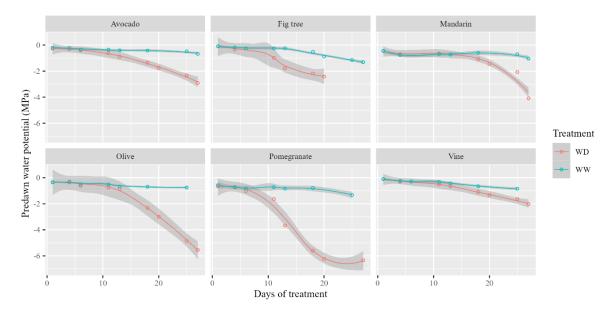
^DPlant Breeding Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile.

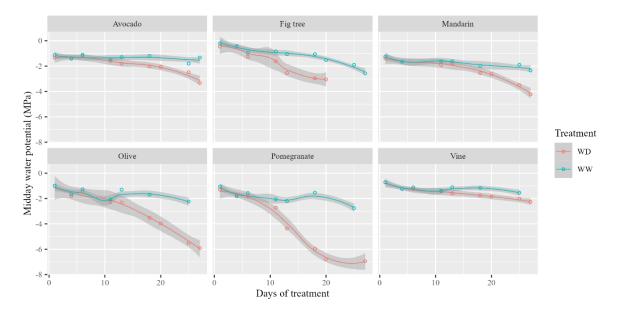
^EEscuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco S/N, Quillota 2260000, Chile.

^FInstituto de Investigaciones Agropecuarias, INIA Intihuasi, Colina San Joaquín s/n, La Serena, Chile.


^GPrograma de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santiago, Chile.

^{*}Correspondence to: Marco Garrido-Salinas Departamento de Agronomía, Facultad de Ciencias, Universidad de la Serena, Avenida La Paz 1108, Ovalle 1842646, Chile Email: marco.garrido@userena.cl


Supplementary Information


Supplementary Figure S1: Relative humidity, mean air temperature, and incident photosynthetic active radiation during the experimental period. Centro de Estudios de Zonas Áridas, Las Cardas, Coquimbo, North of Chile (Lat -30.251, Lon -71.257, 282 msnm).

Supplementary Figure S2: Stomatal conductance (g_s) as a function of the leaf or twig midday water potential (Ψ_{md}) in six fruit tree species under well-watered (WW) and water deficit (WD) treatments. The curve in each panel is the function $g_s = g_{smax}/(1 + (\Psi_{md}/P_{g50})^S)$ for each species.

Supplementary Figure S3: Predawn water potential through the experimental period in six fruit tree species under a well-watered (WW) and water deficit (WD) condition. Data are mean SWF (n=4) and the gray area the 95% confidence interval.

Supplementary Figure S4: midday water potential through the experimental period in six fruit tree species under a well-watered (WW) and water deficit (WD) condition. Data are mean SWF (n=4) and the gray area the 95% confidence interval.

Supplementary Table S1: Trait, abbreviation, and descriptions of traits measured and estimated for sis fruit tree species.

Trait	Abbreviation	Physiological significance
Stomatal conductance (mmol m ⁻² s ⁻¹)	gs	Stomatal conductance measured at midday (mmol m ⁻² s ⁻¹)
Predawn water potential (MPa)	Ψ_{pd}	Maximum water potential experienced by the plant during a daily cycle (MPa)
Midday water potential (MPa)	Ψ_{md}	Minimum water potential experienced by the plant during a daily cycle (MPa)
Maximum stomatal conductance (mmol m ⁻² s ⁻¹)	gsmax	Stomatal conductance was measured at midday at high water potential and water availability (mmol m ⁻² s ⁻¹)
Water potential at which gs decreases by 50% from its maximum (MPa)	P _{g50}	P _{g50} represents the sensitivity of stomatal conductance to leaf water potential.
Slope of the relationship between g _s and leaf water potential (mmol m ⁻² s ⁻¹ MPa ⁻¹)	S	A steeper slope should be interpreted as a greater variation in stomatal conductance per unit change in leaf water potential.
Water potential at the turgor loss point (MPa)	TLP	Leaf water potential when hydrostatic pressure is zero (incipient plasmolysis). A lower value implies greater leaf tolerance to water deficit. A lower value is interpreted as a more anisohydric strategy.
Hydroscape Area (MPa ²)	НА	A larger Hydroscape Area implies greater stomatal conductance tolerance to decreases in soil water potential. A higher value is interpreted as a more anisohydric species.
Leaf mass per area (g m ⁻²)	LMA	The ratio of leaf dry matter mass per unit leaf area represents carbon investment in leaf growth per unit area. A higher value is interpreted as denser leaf tissue.
Wood density (g cm ⁻³)	WDen	The ratio of stem dry matter mass per unit stem volume represents carbon investment in stem growth per unit volume. A higher value is interpreted as a denser stem.