Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Kinetic response of photosystem II photochemistry in the cyanobacterium Spirulina platensis to high salinity is characterized by two distinct phases

Congming Lu, Giuseppe Torzillo and Avigad Vonshak

Australian Journal of Plant Physiology 26(3) 283 - 292
Published: 1999

Abstract

The kinetic response of photosystem II (PS II) photochemistry in Spirulina platensis(Norstedt M2 ) to high salinity (0.75 M NaCl) was found to consist of two phases. The first phase, which was independent of light, was characterized by a rapid decrease (15–50%) in the maximal efficiency of PS II photochemistry (Fv /Fm), the efficiency of excitation energy capture by open PS II reaction centres (Fv′/Fm′), photochemical quenching (qp) and the quantum yield of PS II electron transport (Φ PS II) in the first 15 min, followed by a recovery up to about 80–92% of their initial levels within the next 2 h. The second phase took place after 4 h, in which further decline in above parameters occurred. Such a decline occurred only when the cells were incubated in the light, reaching levels as low as 45–70% of their initial levels after 12 h. At the same time, non-photochemical quenching (qN) and Q B -non-reducing PS II reaction centres increased significantly in the first 15 min and then recovered to the initial level during the first phase but increased again in the light in the second phase. The changes in the probability of electron transfer beyond QAo) and the yield of electron transport beyond QAEo), the absorption flux (ABS/RC) and the trapping flux (TRo /RC) per PS II reaction centre also displayed two different phases. The causes responsible for the decreased quantum yield of PS II electron transport during the two phases are discussed.

https://doi.org/10.1071/PP98119

© CSIRO 1999

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions