Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Endogenous gibberellin content does not correlate with photoperiod-induced growth changes in strawberry petioles

Nadine J. Wiseman and Colin G. N. Turnbull

Australian Journal of Plant Physiology 26(4) 359 - 366
Published: 1999

Abstract

We have examined whether gibberellins (GAs) mediate photoperiodic growth responses in strawberry (Fragaria × ananassa) by measuring GA content and GA metabolism in petioles with accurately defined growth rates. Gibberellin A1 , GA8 , GA19 , GA20 , GA29 , GA34 , and tentatively GA17 , were identified by gas chromatography–mass spectrometry, and GA4 was detected by selected ion monitoring. Although petiole growth rates were reduced within 2 d of a long-day to short-day transfer, we found no consistent changes in GA content until 8 d, when GA1 , GA8 , GA29 and GA34 were reduced by about two-fold in short days. GA20 concentration was always low regardless of age or treatment, typically 10-fold less than GA1 and 40-fold less than GA19 . Application of paclobutrazol (25 g plant–1 ) reduced growth rate by 43%, somewhat greater than the effect of short days (23%), but resulted in a six-fold decrease in GA1 content, much greater than the maximum two-fold effect of short days. However, paclobutrazol-treated petioles in long and short days differed in growth rate by 30%, yet had no difference in GA1 content. [2H]GA19 and [2H]GA20 were metabolised to GA1 , GA8 and GA29 , although conversion of GA19 was slow. GA4 was converted to GA 34 but not to GA1 or GA8 . Photoperiod had little effect on any of these metabolic steps. For the following reasons, we suggest that the photoperiod growth response is not mediated primarily through altered GA concentrations: (1) a lack of a rapid photoperiod effect on GA concentrations or metabolism, (2) changes in growth before or independent of changes in GA concentrations and (3) a normal photoperiod effect on growth in petioles with artificially lowered GA content.

https://doi.org/10.1071/PP98002

© CSIRO 1999

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions