Putting halophytes to work – genetics, biochemistry and physiology
Bernhard Huchzermeyer A and Tim Flowers B C DA Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30419 Hannover, Germany.
B John Maynard Smith Building, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
C School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
D Corresponding author. Email: t.j.flowers@sussex.ac.uk
Functional Plant Biology 40(9) v-viii https://doi.org/10.1071/FPv40n9_FO
Published: 2 August 2013
Abstract
Halophytes are a small group of plants able to tolerate saline soils whose salt concentrations can reach those found in ocean waters and beyond. Since most plants, including many of our crops, are unable to survive salt concentrations one sixth those in seawater (about 80 mM NaCl), the tolerance of halophytes to salt has academic and economic importance. In 2009 the COST Action Putting halophytes to work – from genes to ecosystems was established and it was from contributions to a conference held at the Leibniz University, Hannover, Germany, in 2012 that this Special Issue has been produced. The 17 contributions cover the fundamentals of salt tolerance and aspects of the biochemistry and physiology of tolerance in the context of advancing the development of salt-tolerant crops.
Additional keywords: heavy metals, microbiome, proteomics, reactive oxygen species, ROS, salinity, salt tolerance, water logging.
References
Ahmed MZ, Shimazaki T, Gulzar S, Kikuchi A, Gul B, Khan MA, Koyro H-W, Huchzermeyer B, Watanabe KN (2013) The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Functional Plant Biology 40, 860–871.| The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides.Crossref | GoogleScholarGoogle Scholar |
Aronson JA (1989) ‘HALOPH A Data Base of Salt Tolerant Plants of the World.’ (Office of Arid Land Studies, University of Arizona: Tucson, Arizona) 77.
Barrett-Lennard EG, Shabala SN (2013) The waterlogging/salinity interaction in higher plants revisited – focusing on the hypoxia-induced disturbance to K+ homeostasis. Functional Plant Biology 40, 872–882.
| The waterlogging/salinity interaction in higher plants revisited – focusing on the hypoxia-induced disturbance to K+ homeostasis.Crossref | GoogleScholarGoogle Scholar |
Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Functional Plant Biology 40, 819–831.
| Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |
Berger-Landfeld U (1933) Zur Frage der “Physiologischen Trockenheit” der Salzböden. Beiheft zum Botanischen Centralblatt 51, 697–710.
Braun-Blanquet J (1931) Zur Frage der “Physiologischen Trockenheit” der Salzböden. Berichte der Schweizerischen Botanischen Gesellschaft 40, 33–39.
Breckle SW (2002) Salinity, halophytes and salt affected natural ecosystems. In ‘Salinity: Environment-Plants-Molecules’ . (Eds A Läuchli A, U Lüttge) (Kluwer: Dordrecht).
Buhmann A, Papenbrock J (2013) An economic point of view of secondary compounds in halophytes. Functional Plant Biology 40, 952–967.
| An economic point of view of secondary compounds in halophytes.Crossref | GoogleScholarGoogle Scholar |
Chapman VJ (1942) New perspectives in the halophytes. The Quarterly Review of Biology 17, 291–311.
| New perspectives in the halophytes.Crossref | GoogleScholarGoogle Scholar |
Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Functional Plant Biology 40, 759–774.
| The integration of activity in saline environments: problems and perspectives.Crossref | GoogleScholarGoogle Scholar |
Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytologist 179, 964–974.
| Flooding tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar |
Couto T, Duarte B, Barroso D, Caçador I, Marques JC (2013) Halophytes as sources of metals in estuarine systems with low levels of contamination. Functional Plant Biology 40, 931–939.
| Halophytes as sources of metals in estuarine systems with low levels of contamination.Crossref | GoogleScholarGoogle Scholar |
Duarte B, Santos D, Caçador I (2013) Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. Functional Plant Biology 40, 922–930.
| Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker.Crossref | GoogleScholarGoogle Scholar |
English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Functional Plant Biology 40, 897–912.
| Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species).Crossref | GoogleScholarGoogle Scholar |
Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945–963.
| Salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar |
Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology 28, 89–121.
| The mechanism of salt tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar |
Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. The Quarterly Review of Biology 61, 313–337.
| Halophytes.Crossref | GoogleScholarGoogle Scholar |
Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37, 604–612.
| Evolution of halophytes: multiple origins of salt tolerance in land plants.Crossref | GoogleScholarGoogle Scholar |
Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology 40, 805–818.
| Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes?Crossref | GoogleScholarGoogle Scholar |
Greenway M, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology 31, 149–190.
| Mechanisms of salt tolerance in non-halophytes.Crossref | GoogleScholarGoogle Scholar |
Hamed KB, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Bosch SM, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Functional Plant Biology 40, 883–896.
| Physiological response of halophytes to multiple stresses.Crossref | GoogleScholarGoogle Scholar |
Kosová K, Vítámvás P, Urban MO, Prášil IT (2013) Plant proteome responses to salinity stress – comparison of glycophytes and halophytes. Functional Plant Biology 40, 775–786.
| Plant proteome responses to salinity stress – comparison of glycophytes and halophytes.Crossref | GoogleScholarGoogle Scholar |
Koyro H-W, Zörb C, Debez A, Huchzermeyer B (2013) The effect of hyper-osmotic salinity on protein pattern and enzyme activities of halophytes. Functional Plant Biology 40, 787–804.
| The effect of hyper-osmotic salinity on protein pattern and enzyme activities of halophytes.Crossref | GoogleScholarGoogle Scholar |
Kranner I, Seal CE (2013) Salt stress, signalling and redox control in seeds. Functional Plant Biology 40, 848–859.
| Salt stress, signalling and redox control in seeds.Crossref | GoogleScholarGoogle Scholar |
Menzel U, Lieth H (2003) HALOPHYTE Database Vers. 2.0 update. In ‘Cash Crop Halophytes. Vol. 38.’ (Eds H Lieth and M Mochtchenko) pp. compact disk. (Kluwer: Dordrecht)
Montfort C (1926) Physiologische und pflanzengeographische Seesalzwirkungen. I. Einfluß ausgleichender Seesalzwirkungen auf Mesophyll- und Schließzellen. Kritik der Iuinschen Hypothese der Salzbeständigkeit. Jahrbuch der wissenschaftlichen Botanik 65, 502–550.
Montfort C (1937) Die Trockenrcsistenz der Gezeitenpflanzen und die Frage der Übereinstimmung von Standort und Vegetation. Berichte der Deutschen Botanischen Gesellschaft 55, 85–95.
Montfort C, Branderup W (1927a) Physiologische und pflanzengeographische Seesalzwirkungen. II. Ökologische Studien über Leistung und erste Entwicklung der Halophyten. Jahrbuch der wissenschaftlichen Botanik 66, 902–946.
Montfort C, Branderup W (1927b) Physiologische und pflanzengeographische Seesalzwirkungen. III. Die Salzwachstumsreaktion der Wurzel. Jahrbuch der wissenschaftlichen Botanik 67, 105–171.
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
| Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar |
Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology 40, 832–847.
| Reactive oxygen species regulation and antioxidant defence in halophytes.Crossref | GoogleScholarGoogle Scholar |
Pampe E (1940) Beiträge zur Ökologie der Hiddenseer Halophyten. Beiheft zum Botanischen Centralblatt 60, 223–326.
Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Functional Plant Biology 40, 913–921.
| Bioaccumulation of heavy metals in Spartina.Crossref | GoogleScholarGoogle Scholar |
Rozema J, Flowers T (2008) Crops for a Salinized World. Science 322, 1478–1480.
| Crops for a Salinized World.Crossref | GoogleScholarGoogle Scholar |
Rozema J, Muscolo A, Flowers TJ (2013) Sustainable cultivation and exploitation of halophyte crops in a salinising world. Environmental and Experimental Botany 92, 1–3.
| Sustainable cultivation and exploitation of halophyte crops in a salinising world.Crossref | GoogleScholarGoogle Scholar |
Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology 40, 940–951.
| Properties of the halophyte microbiome and their implications for plant salt tolerance.Crossref | GoogleScholarGoogle Scholar |
Schimper A (1898) ‘Pflanzengeographie auf physiologischer Grundlagen.’ (G Fischer Verlag: Jena)
Steiner M (1934) Zur Ökologie der Salzmarschen der Nordöstlichen Vereinigten Staaten von Noramerika. Jahrbuch der wissenschaftlichen Botanik 81, 94–202.
Steiner M (1939) Die Zusammensetzung des Zellsaftes bei hoheren Pflanzen in ihrer okologischen Bedeutung. Ergebnisse der Biologie 17, 152–254.
Steiner M, Eschrich W (1958) Die osmotische Bedeutung der Mineralstoffe. In ‘Handbuch der Pflanzenphysiologie. Vol. 4.’ Ed. W Ruhland) pp. 334–354. (Springer: Berlin, Goetingen, Heidelberg)
Stocker O (1925) Beiträge zum Halophytenproblem. II. Standort und Transpiration der Nordseehalophyten. Zeitschrift für Botanik 17, 1–24.
Stocker O (1928) Das Halophytenproblem. Ergebnisse der Biologie 3, 265–353.
| Das Halophytenproblem.Crossref | GoogleScholarGoogle Scholar |
Storey R, Wyn Jones RG (1975) Betaine and Choline Levels in Plants and their Relationship to NaCl Stress. Plant Science Letters 4, 161–168.
| Betaine and Choline Levels in Plants and their Relationship to NaCl Stress.Crossref | GoogleScholarGoogle Scholar |
Ventura Y, Myrzabayeva M, Alikulov Z, Cohen S, Shemer Z, Sagi M (2013) The importance of iron supply during repetitive harvesting of Aster tripolium. Functional Plant Biology 40, 968–976.
| The importance of iron supply during repetitive harvesting of Aster tripolium.Crossref | GoogleScholarGoogle Scholar |
Waisel Y (1972) ‘The biology of halophytes.’ (Academic: London)