Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Energy-crises in well-aerated and anoxic tissue: does tolerance require the same specific proteins and energy-efficient transport?

Hank Greenway A C and William Armstrong A B
+ Author Affiliations
- Author Affiliations

A School of Plant Biology, Faculty of Science, the University of Western Australia, Crawley, WA 6009, Australia.

B Biological Science, School of Environmental Sciences, Faculty of Science and Engineering, University of Hull, Kingston upon Hull, HU6 7RX, UK.

C Corresponding author. Email: hank.greenway@uwa.edu.au

Functional Plant Biology 45(9) 877-894 https://doi.org/10.1071/FP17250
Submitted: 31 August 2017  Accepted: 20 February 2018   Published: 12 April 2018

Abstract

Many of the profound changes in metabolism that are caused by O2 deficiency also occur in well-aerated tissues when oxidative phosphorylation is partially or wholly inhibited. For these well-aerated tissues, reduction in energy formation occurs during exposure to inhibitors of oxidative phosphorylation, cold/chilling and wounding, so we prefer the term ‘energy crisis’ metabolism over ‘anaerobic’ metabolism. In this review, we note that the overwhelming body of data on energy crises has been obtained by exposure to hypoxia-anoxia, which we will indicate when discussing the particular experiments. We suggest that even transient survival of an energy crisis requires a network of changes common to a large number of conditions, ranging from changes in development to various adverse conditions such as high salinity, drought and nutrient deficiency, all of which reduce growth. During an energy crisis this general network needs to be complemented by energy specific proteins, including the so called ‘anaerobic proteins’ and the group of ERFVII transcription factors, which induces the synthesis of these proteins. Crucially, the difference between anoxia-intolerant and -tolerant tissues in the event of a severe energy crisis would mainly depend on changes in some ‘key’ energy crisis proteins: we suggest these proteins would include phytoglobin, the V-H+PPiase and pyruvate decarboxylase. A second characteristic of a high tolerance to an energy crisis is engagement of energy efficient transport. This feature includes a sharp reduction in rates of solute transport and use of energy-efficient modifications of transport systems by primary H+ transport and secondary H+-solute transport systems. Here we also discuss the best choice of species to study an energy crisis. Further, we consider confounding of the acclimative response by responses to injury, be it due to the use of tissues intolerant to an energy crisis, or to faulty techniques.

Additional keywords: ATP, hypoxia, inhibitors of oxidative phosphorylation, pHcyt, ‘anaerobic’ enzymes, key proteins.


References

Andrews DL, Drew MC, Johnson JR, Cobb BG (1994) The response of maize seedlings of different ages to hypoxic and anoxic stress. Changes in induction of Adh1mRNA, ADH activity, and survival of anoxia. Plant Physiology 105, 53–60.
The response of maize seedlings of different ages to hypoxic and anoxic stress. Changes in induction of Adh1mRNA, ADH activity, and survival of anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtF2msLo%3D&md5=97bc2bf650ff4caac6298b4ca313a6d1CAS |

Armstrong W, Armstrong J (2014) Plant internal oxygen transport (diffusion and convection) and measuring and modelling oxygen gradients. Plant Cell Monographs 21, 267–298.

Armstrong W, Beckett PM (2011a) Experimental and modelling data contradict the idea of respiratory down-regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase. New Phytologist 190, 431–441.
Experimental and modelling data contradict the idea of respiratory down-regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gktbw%3D&md5=58920a23bc54f35d9f120163fe2e17e0CAS |

Armstrong W, Beckett PM (2011b) The respiratory down-regulation debate. New Phytologist 190, 276–278.
The respiratory down-regulation debate.Crossref | GoogleScholarGoogle Scholar |

Armstrong W, Webb T, Darwent M, Beckett PM (2009) Measuring and interpreting respiratory critical oxygen pressures in roots. Annals of Botany 103, 281–293.
Measuring and interpreting respiratory critical oxygen pressures in roots.Crossref | GoogleScholarGoogle Scholar |

Atwell BJ, Greenway H, Colmer TD (2015) Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. New Phytologist 206, 36–56.
Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtF2ru70%3D&md5=50568154a0acea9c816a381d9784cf46CAS |

Aurisano N, Bertani A, Reggiani R (1995) Anaerobic accumulation of 4-aminobutarate in rice seedlings: causes and significance. Phytochemistry 38, 1147–1150.
Anaerobic accumulation of 4-aminobutarate in rice seedlings: causes and significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVGqsbo%3D&md5=1c31955eb8bc7122781e2e379674547bCAS |

Beevers H (1953) 2,4-dinitrophenol and plant respiration. American Journal of Botany 40, 91–96.
2,4-dinitrophenol and plant respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXisF2itw%3D%3D&md5=657fcaf2a2c1445d843229b875684c8cCAS |

Bieniawska Z, Barrett PP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. The Plant Journal 49, 810–828.
Analysis of the sucrose synthase gene family in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WrtLw%3D&md5=e129bfbba04ed71c453fb95b22ddf1cdCAS |

Blum A (2011) Drought resistance – is it really a complex trait? Functional Plant Biology 38, 753–757.
Drought resistance – is it really a complex trait?Crossref | GoogleScholarGoogle Scholar |

Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201, 496–501.
Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVehsrY%3D&md5=3d17694a0a0fec9494c073401592ad2cCAS |

Carystinos GD, Macdonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiology 108, 641–649.
Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtlaqsrk%3D&md5=466d3ef9deb22611d8005169f8b48013CAS |

Chang WWP, Huang L, Shin M, Webster C, Burlingname ALR, Roberts JKM (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of Zea mays seedling acclimated to low oxygen concentrations and identification of proteins by mass spectrometry. Plant Physiology 122, 295–317.
Patterns of protein synthesis and tolerance of anoxia in root tips of Zea mays seedling acclimated to low oxygen concentrations and identification of proteins by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFCjt7o%3D&md5=7798d1cc91e6c947c782b83fe35a74bbCAS |

Christie PJ, Hahn M, Walbot BM (1991) Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiology 95, 699–706.
Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVelsbY%3D&md5=a9e7f778375eda217104dd17f2008f8aCAS |

Colmer TD, Huang S, Greenway H (2001) Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia. Journal of Experimental Botany 52, 1507–1517.
Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVCmtbk%3D&md5=1cfe9f21e7558d11eb1a7ed12790abd4CAS |

Colmer TD, Armstrong W, Greenway H, Ismail AM, Kirk GJD, Atwell BJ (2014) Physiological mechanisms in flooding tolerance of rice: transient complete submergence and prolonged standing water. Progress in Botany 75, 255–307.
Physiological mechanisms in flooding tolerance of rice: transient complete submergence and prolonged standing water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlOms7g%3D&md5=034c2f017f9f49b793db299b34f76cb4CAS |

Cuin TA, Shabala S (2007) Amino acids regulate salinity induced potassium efflux in barley root epidermis. Planta 225, 753–761.
Amino acids regulate salinity induced potassium efflux in barley root epidermis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yht7s%3D&md5=6c3876251f1e5851ae25e62de292d06eCAS |

Cvetskovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentration of superoxide and nitric oxide. New Phytologist 195, 32–39.

Davies JM, Poole RJ, Sanders D (1993) The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP: apparent significance for inorganic-pyrophosphate-driven reactions of intermediary metabolism. Biochimica et Biophysica Acta 1141, 29–36.
The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP: apparent significance for inorganic-pyrophosphate-driven reactions of intermediary metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvVKgsr0%3D&md5=6299aeccd3bf4258a1a81156173c4d60CAS |

de Visser R, Spitters CJT, Bouma TJ (1992) Energy cost of protein turnover: theoretical calculation and experimental estimation from regression of respiration on protein concentration of full-grown leaves. In ‘Molecular and biochemical and physiological aspects of plant respiration’. (Eds H Lambers, LWH van der Plas) pp. 493–508. (SPB Academic Publishing: the Hague, The Netherlands)

Demidchik V, Cuin TA, Svistunenko D, Smith SL, Millar AJ, Shabala S, Yurin Y (2010) Arabidopsis root K+ efflux conductance activated by hydroxyl radicles: single channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science 123, 1468–1479.
Arabidopsis root K+ efflux conductance activated by hydroxyl radicles: single channel properties, genetic basis and involvement in stress-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1KmtL0%3D&md5=61b426f853897fdb74cb55d3ea12ffa5CAS |

Demmer NK (2017) A reverse genetic approach to low oxygen tolerance in Arabidopsis. Masters thesis. Macquarie University, Sydney, Australia.

Dennis ES, Olive M, Dolferus R, Millar A, Peacock WJ, Setter TL (1992) Biochemistry and molecular biology of the anaerobic response. In ‘Inducible plant proteins: their biochemistry and molecular biology. Society for Experimental Biology Seminar Series 49’. (Ed. JL Wray) pp. 231–245. (Cambridge University Press: Cambridge, UK)

Dixon MH, Hill SA, Jackson MB, Ratcliffe RG, Sweetlove LJ (2006) Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen. Plant & Cell Physiology 47, 128–140.
Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12ksb0%3D&md5=dbbafc60c3969eb1e0547b67cffc1567CAS |

Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology 48, 223–250.
Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1ensLc%3D&md5=8d3ab7e73edb9d21695fde1ffee62164CAS |

Duff SMG, Moorhead GBG, Lefebre DD, Plaxton WC (1989) Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiology 90, 1275–1278.
Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslWhs7w%3D&md5=32a28baea9bcf1dc6b5236bb49476a66CAS |

Edwards JM, Roberts TH, Atwell BJ (2012) Quantifying ATP turnover in anoxic rice coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. Journal of Experimental Botany 63, 4389–4402.
Quantifying ATP turnover in anoxic rice coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1egtbfF&md5=3f07fc5178716e1578156bccea9f602bCAS |

Ellis MH, Millar AA, Llewellyn DJ, Peacock WJ, Dennis ES (2000) Transgenic cotton (Gossypium hirsutum) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency. Australian Journal of Plant Physiology 27, 1041–1050.

Felle HH (2001) pH: signal and messenger in plant cells. Plant Biology 3, 577–591.
pH: signal and messenger in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVyktA%3D%3D&md5=24f1d4e6fe3c29039a63840392d97b5fCAS |

Felle HH (2005) pH regulation in anoxic plants. Annals of Botany 96, 519–532.
pH regulation in anoxic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGitLnK&md5=76452e1ae996ef6417c4f3d487525ad4CAS |

Fox GG, Maccallan NR, Ratcliffe RG (1995) Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism. Planta 195, 324–330.
Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1ers7k%3D&md5=cd0ce8d3f91b22009171c1fb25094b21CAS |

Frenkel C, Erez A (1996) Induction of chilling tolerance in cucumber (Cucumis sativus) seedlings by endogenous and applied ethanol. Physiologia Plantarum 96, 593–600.
Induction of chilling tolerance in cucumber (Cucumis sativus) seedlings by endogenous and applied ethanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xisleqsb8%3D&md5=aa7b5f3b9867816e493a4d153c0cf106CAS |

Frick A, Jarva M, Tömroth-Horsefield S (2013) Structural basis for pH gating of plant aquaporins. FEBS Letters 587, 989–993.
Structural basis for pH gating of plant aquaporins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVOltrc%3D&md5=093249041ac2fd08e8fd836814466743CAS |

Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I Growth, survival and anaerobic catabolism. Functional Plant Biology 30, 1–47.
Mechanisms of anoxia tolerance in plants. I Growth, survival and anaerobic catabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVCjtLc%3D&md5=570511dfec73ed1b3d9d0443db4b346dCAS |

Gibbs J, Turner DW, Armstrong W, Darwent MJ, Greenway H (1998) Response to oxygen deficiency in primary roots of maize. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Australian Journal of Plant Physiology 25, 745–758.
Response to oxygen deficiency in primary roots of maize. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFCqtb8%3D&md5=37ceacecd41dc599a85774511c5a2f9eCAS |

Gibbs J, Morrell S, Valdez A, Setter TL, Greenway H (2000) Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. Journal of Experimental Botany 51, 785–796.
Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtF2jsLo%3D&md5=b702d1ba3c6e91a2d0692c435559ce83CAS |

Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway. Nature 479, 415–418.
Homeostatic response to hypoxia is regulated by the N-end rule pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGks7nP&md5=51168b0e4aa8f5b38b129691ff62c6c6CAS |

Gibbs DJ, Conde JV, Berckhan S, Prahad G, Mendiondo GM, Holdsworth MJ (2015) Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress response in plants. Plant Physiology 169, 23–31.
Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress response in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xkslyhtw%3D%3D&md5=62cf611507e90acd52683e0715de38f7CAS |

Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.
A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVSqtrw%3D&md5=a0eadafa4c4c0ed09484419680a4a0f6CAS |

Graciet E, Wellmer F (2010) The plant N-end rule pathway: structure and functions. Trends in Plant Science 15, 447–453.
The plant N-end rule pathway: structure and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvV2isbw%3D&md5=fba8fbf81fcaa0bd66c49bce6336d13dCAS |

Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to energy consuming processes. Functional Plant Biology 30, 999–1036.
Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to energy consuming processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Cgtbs%3D&md5=0a842b6f7567d0e49c88151c82f26900CAS |

Greenway H, Kulichikhin KY, Cawthray GR, Colmer TD (2012) pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pH stat and net H+ influx in the presence and absence of NO3 –. Journal of Experimental Botany 63, 1969–1983.
pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pH stat and net H+ influx in the presence and absence of NO3 .Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjslehtrc%3D&md5=59b099306046fcc335c421f5ce3f8077CAS |

Gronewald JW, Hanson JB (1982) Adenine nucleotide content of corn roots as affected by injury and subsequent washing. Plant Physiology 69, 1252–1256.
Adenine nucleotide content of corn roots as affected by injury and subsequent washing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvV2jtbY%3D&md5=a493c8efb5d8dbb1d3d542d7808cb86cCAS |

Gronewald JW, Cheeseman HM, Hanson JB (1979) Comparison of the responses of corn root tissue to fusicoccin and washing. Plant Physiology 63, 255–259.
Comparison of the responses of corn root tissue to fusicoccin and washing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhsVylurs%3D&md5=eca4409886d766d4662bc6bfc0711240CAS |

Gupta KJ, Igamberdiev AU (2011) . Mitochondrion 11, 537–543.
.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVSnt7g%3D&md5=c54b86573662adeddccc65f30ae43fe0CAS |

Hafke JB, Neff R, Huett MT, Luettge U, Thiel G (2001) Day-to-night variations of cytoplasmic pH in a crassulacean acid metabolism plant. Protoplasma 216, 164–170.
Day-to-night variations of cytoplasmic pH in a crassulacean acid metabolism plant.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mnos1Oktg%3D%3D&md5=c5abe051017c64624f6b991509f93826CAS |

Hedrich R, Fluegge UI, Fernandez JM (1986) Patch-clamp studies of ion transport in isolated plant vacuoles FEBS Letters 204, 228–232.
Patch-clamp studies of ion transport in isolated plant vacuolesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xls1yqu70%3D&md5=0ef5407e5728bea7b8af9e4c28671fe9CAS |

Hedrich R, Kurdjian A, Guern J, Fluegge UI (1989) Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysomal compartment. EMBO Journal 8, 2835–2841.

Hepler PK, Wayne RO (1985) Calcium and plant development. Annual Review of Plant Physiology 36, 397–439.
Calcium and plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlCrtrs%3D&md5=668ab1ccce279f609f7a03e82559616cCAS |

Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Molecular Biology 54, 325–334.
Rice mutant resources for gene discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOit7c%3D&md5=06ad0b535bbd66d43d090b90b4c111cfCAS |

Ho VT, Tran AN, Cardarelly F, Perata P, Pucciariello C (2017) A calcineurin B-like protein participates in low oxygen signalling in rice. Functional Plant Biology 44, 917–928.
A calcineurin B-like protein participates in low oxygen signalling in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlSitLjN&md5=8a3fde5c16a312497878779d18f2e87fCAS |

Huang S, Greenway H, Colmer TD (2003) Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-‘intolerant’, but not of a -‘tolerant’, genotype. Journal of Experimental Botany 54, 2363–2373.
Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-‘intolerant’, but not of a -‘tolerant’, genotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Cnsb8%3D&md5=c586081cb26df5e3a20a4b42ce7aca74CAS |

Huang S, Ishizawa K, Greenway H, Colmer TD (2005a) Manipulation of ethanol production in anoxic rice coleoptiles by exogenous glucose determines rates of ion fluxes and provides estimates of energy requirements for cell maintenance during anoxia. Journal of Experimental Botany 56, 2453–2463.
Manipulation of ethanol production in anoxic rice coleoptiles by exogenous glucose determines rates of ion fluxes and provides estimates of energy requirements for cell maintenance during anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVahtLjP&md5=83f22931086d30f82165c1d4773428fcCAS |

Huang S, Greenway H, Colmer TD, Millar AH (2005b) Protein synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth, and energy utilisation. Annals of Botany 96, 703–715.
Protein synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth, and energy utilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGitLbL&md5=defffdb3b3b6207badabe61990c270e4CAS |

Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis EJ (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 99, 17197–17202.
Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvV2qtA%3D%3D&md5=a33c34d0d34bfa626e5eeef6344a4899CAS |

Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during plant anaerobiosis. Annals of Botany 103, 259–268.
Plant mitochondrial function during plant anaerobiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFCkur8%3D&md5=d7900b97e73bca49ba8afab39e0c8bf3CAS |

Igamberdiev AU, Kleczkowski LA (2011) Magnesium and cell energetics in plants under anoxia The Biochemical Journal 437, 373–379.
Magnesium and cell energetics in plants under anoxiaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVeksbk%3D&md5=78538d434e68944568df7a98060e484bCAS |

Igamberdiev AU, Bykova NV, Hill RD (2011) Structural and functional properties of class 1 plant hemoglobins. IUBMB Life 63, 146–152.
Structural and functional properties of class 1 plant hemoglobins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWitL0%3D&md5=dd16087ea77fabeb65399dcb0e4d6aa0CAS |

Ishizawa K, Murakami S, Kawakani Y, Kuzumochi H (1999) Growth and energy status of arrowhead tubers, pondweed turions and rice seedlings under anoxic condition. Plant, Cell & Environment 22, 505–514.
Growth and energy status of arrowhead tubers, pondweed turions and rice seedlings under anoxic condition.Crossref | GoogleScholarGoogle Scholar |

Ismond KP, Dolferus R, De Pauw M, Dennis ES (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiology 132, 1292–1302.
Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFGhtLk%3D&md5=7208ed40db56425fc965a851b89919d8CAS |

Kaiser WWM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiologia Plantarum 105, 384–389.
Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity.Crossref | GoogleScholarGoogle Scholar |

Kato-Noguchi H (2000) Evaluation of the importance of lactate for the activation of ethanol formation in lettuce roots in anoxia. Physiologia Plantarum 109, 28–33.
Evaluation of the importance of lactate for the activation of ethanol formation in lettuce roots in anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Ggs7k%3D&md5=2e9a58a6f236634c00309720c51ac60eCAS |

Kato-Noguchi H (2001) Wounding stress induces alcohol dehydrogenase in maize and lettuce seedlings. Plant Growth Regulation 35, 285–288.
Wounding stress induces alcohol dehydrogenase in maize and lettuce seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVyqtr8%3D&md5=407b9292ab5aff539fd4a8b753bc2322CAS |

Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiology 69, 840–847.
Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhslyjt78%3D&md5=afa5b85b317fee86b8af3b6eb6df1d68CAS |

Koizumi Y, Hara Y, Yasaki Y, Sakano S, Isazawa K (2011) Involvement of plasma membrane H+-ATPase in elongation of stems in pond weed (Potamogeton distinctus) turions. New Phytologist 190, 421–430.
Involvement of plasma membrane H+-ATPase in elongation of stems in pond weed (Potamogeton distinctus) turions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gktb8%3D&md5=7fe2facca7b2687fc5ca6f330ac386d0CAS |

Kosmacz N, Parlanti S, Schwarzlander M, Kragler F, Licausi F, van Dongen JT (2015) The stability and nuclear localisation of the transcription factor RAP 2.12 are dynamically related by oxygen concentration. Plant, Cell & Environment 38, 1094–1103.
The stability and nuclear localisation of the transcription factor RAP 2.12 are dynamically related by oxygen concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVSmtrw%3D&md5=e5ff2e2f90fa4b2cf11125737052bd6fCAS |

Kulichikhin KY, Aitio O, Chirkova TV, Fagerstedt KV (2007) Effect of O2 concentration on intra cellular pH, glucose6P and NTP content in rice (Oryza sativa) and wheat (Triticum aestivum) root tips: in vivo 31-P-NMR. Physiologia Plantarum 129, 507–518.
Effect of O2 concentration on intra cellular pH, glucose6P and NTP content in rice (Oryza sativa) and wheat (Triticum aestivum) root tips: in vivo 31-P-NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVykur0%3D&md5=99e473b057dafc6637acecd2e996027aCAS |

Kulichikhin KY, Greenway H, Byrne L, Colmer TD (2009) Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral circumstances. Journal of Experimental Botany 60, 2119–2128.
Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral circumstances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSjuro%3D&md5=eb4afcfd9f1431cfd216286b5adfe930CAS |

Kurniasih B, Greenway H, Colmer TD (2017) Energetics of acclimation to NaCl by submerged, anoxic rice seedlings. Annals of Botany 119, 129–142.
Energetics of acclimation to NaCl by submerged, anoxic rice seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXltlCqtbg%3D&md5=4a28de0b1cad8404e0770777fe0c2fbdCAS |

Lasanthi-Kudahettige R, Magneschi L, Loretti E, Gonzali L, Licausite F Novi G, Berretta O, Viluti F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiology 144, 218–231.
Transcript profiling of the anoxic rice coleoptile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1KjtL8%3D&md5=ab70cb4c225c9bc0913a03f46338b95aCAS |

Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilisation. Nature 479, 419–422.
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGks73L&md5=20e41658c596e0f7aba12c5898629e03CAS |

Long AR, Lorraine E, Nelson SJ, Hall JL (1995) Localisation of membrane phosphatase activity in Ricinus communis seedlings. Journal of Plant Physiology 146, 629–638.
Localisation of membrane phosphatase activity in Ricinus communis seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotlOgu7g%3D&md5=b8d227943a0d3ab472d7e7a512b2dbcaCAS |

Lyons JM (1973) Chilling injury in plants. Annual Review of Plant Physiology 24, 445–466.
Chilling injury in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlt1emurg%3D&md5=e445bc3c067c4bf3a11ce1d7286032c2CAS |

Lyons JM, Raison JK (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiology 45, 386–389.
Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXks1amtL4%3D&md5=91523fc0030c6e1d41e7e48d63ce8a18CAS |

Maeshima M (2000) Vacuolar pyrophosphatases. Biochimica et Biophysica Acta 1465, 37–51.
Vacuolar pyrophosphatases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wgtr4%3D&md5=38f36deb5ccb723abf471e76e401981aCAS |

Mancuso S, Marras AM (2006) Adaptive responses of Vitis root to anoxia. Plant & Cell Physiology 47, 401–409.
Adaptive responses of Vitis root to anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVCltbw%3D&md5=bfa69a4ee5afdd4b9dea368ad134c306CAS |

Maurel C, Santoni V, Doang-Trung L, Wudic MM, Verdoucq L (2009) The cellular dynamic of plant aquaporin expression and function. Current Opinion in Plant Biology 12, 690–698.
The cellular dynamic of plant aquaporin expression and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2murnM&md5=25d0f19c5f54c4c186b9f8f09a866993CAS |

Menegus F, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings. Changes in the pH of intracellular compartments, glucose-6-phosphate level and metabolic rate. Plant Physiology 95, 760–767.
Response to anoxia in rice and wheat seedlings. Changes in the pH of intracellular compartments, glucose-6-phosphate level and metabolic rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVeltrw%3D&md5=ab90046e8f750b3843fd65b8d49b49fcCAS |

Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine amino transferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. The Plant Journal 49, 1108–1121.
Alanine amino transferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFGitbg%3D&md5=5c7b21195f3d9d0ecefa0098b541ac10CAS |

Mocquot B, Prat C, Mouches C, Pradet AP (1981) Effect of anoxia on energy charge and protein synthesis in rice embryo. Plant Physiology 68, 634–640.

Morgan PW, Drew MC (1997) Ethylene and plant response to stress. Physiologia Plantarum 100, 620–630.
Ethylene and plant response to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1yqsLw%3D&md5=bc148b30d9a99ef5d039c7dc9241b217CAS |

Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140, 411–432.
Genome-wide analysis of the ERF gene family in Arabidopsis and rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2itLk%3D&md5=10a8d7bf07bbe379a42316ecfa8e992fCAS |

Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic response to hypoxia. New Phytologist 190, 472–487.
Comparative analysis between plant species of transcriptional and metabolic response to hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gktbs%3D&md5=514ed7c571bc1c077b78d7d988ccd4a4CAS |

Nie X, Hill RD (1997) Mitochondrial respiration and hemoglobin gene expression in barley aleurone layers. Plant Physiology 114, 835–840.
Mitochondrial respiration and hemoglobin gene expression in barley aleurone layers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslOqs7c%3D&md5=5409623f7a9c76ea9647cd2b93214d07CAS |

Palma DA, Blumwald E, Plaxton WC (2000) Upregulation of H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Letters 486, 155–158.
Upregulation of H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGhs78%3D&md5=c67863a4190bf475702e2e1ff596845aCAS |

Paul MV, Lyer S, Amerhausen C, Lehmann M, van Dongen JT, Geigenberger P (2016) Oxygen sensing via the ethylene response transcription factor RAP 2.12 affects plant performance under both normoxia and hypoxia. Plant Physiology 172, 141–153.
Oxygen sensing via the ethylene response transcription factor RAP 2.12 affects plant performance under both normoxia and hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFOrtbbO&md5=308ac96f146bc0fa20e3efc4a9a4800aCAS |

Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Annals of Botany 39, 77–92.
The cost of maintenance processes in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhsVOmu74%3D&md5=5cfe64677d4b929bc274bb819296162cCAS |

Perata P, Pozuela-Romero J, Akazawa T, Yamaguchi J (1992) Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188, 611–617.
Effect of anoxia on starch breakdown in rice and wheat seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFensw%3D%3D&md5=e2f17b436889ec3d4be00c31f1070912CAS |

Plaxton WC, Podesta FE (2006) The functional organisation and control of plant respiration. Critical Reviews in Plant Sciences 25, 159–198.
The functional organisation and control of plant respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVKqtrs%3D&md5=e2524493098e7efde366d31ba639e551CAS |

Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiology 156, 1006–1015.
Metabolic adaptations of phosphate-starved plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWluro%3D&md5=eff040b63f05bcc7192929554a090822CAS |

Quimio CA, Torrizo LB, Setter TL, Ellis M, Grover A, Abrigo EM, Oliva NP, Ella ES, Carpena AL, Ito O, Peacock WJ, Dennis E, Dattal SK (2000) Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. Journal of Plant Physiology 156, 516–521.
Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVOntb4%3D&md5=fa69a6f29bd13fa0ef0bea7b299741fdCAS |

Rahman M, Grover A, Peacock WJ, Dennis ES (2001) Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Australian Journal of Plant Physiology 28, 1231–1241.

Ricard B, van Toya T, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxia tolerance of maize roots using a double mutant. Plant Physiology 116, 1323–1331.
Evidence for the critical role of sucrose synthase for anoxia tolerance of maize roots using a double mutant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFyqsb0%3D&md5=0bd843ea1e0ed43f59f62b50558d9ef5CAS |

Roberts JKM, Chang K, Webster C, Callis J, Walbot V (1989) Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips. Plant Physiology 89, 1275–1278.
Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitV2ns7Y%3D&md5=95706ac6de896e8e8bdbe6aadb786500CAS |

Robinson DC, Haschke H-P, Hinz G, Hoh B, Maeshima M, Marty M (1996) Immunological detection of tonoplast polypeptides in membrane of pea cotelydons. Planta 198, 95–103.
Immunological detection of tonoplast polypeptides in membrane of pea cotelydons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSntbrJ&md5=8fb6bfa1b07643713f05eb1766a77b72CAS |

Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20, 761–767.
The anaerobic proteins of maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltFSltL8%3D&md5=1c0a21cecaf7adea750a54836a707900CAS |

Sachs MM, Subbaiah CS, Saab IN (1996) Anaerobic gene expression and flooding tolerance in maize. Journal of Experimental Botany 47, 1–15.
Anaerobic gene expression and flooding tolerance in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtlajtL4%3D&md5=04016488acd3c14549d3bd979b098fe4CAS |

Saglio PH, Drew MC, Pradet A (1988) Metabolic acclimation to anoxia induced by low (2–4 kPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiology 86, 61–66.
Metabolic acclimation to anoxia induced by low (2–4 kPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1ymurY%3D&md5=b0931b5d6c4d9b22b6f01a079faf8bcdCAS |

Santaniello A, Loretti E, Gonazli S, Novi G, Perata P (2014) A reassessment of the role of sucrose synthase in the hypoxic sucrose-ethanol transition in Arabidopsis. Plant, Cell & Environment 37, 2294–2302.

Shabala S, Shabala L, Baralo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptative responses to oxygen deprivation and soil flooding. Plant, Cell & Environment 37, 2216–2233.

Shabala S, Bose J, Fuglsang A, Pottosin I (2016) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany 67, 1015–1031.
On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlWiu77K&md5=1516d9e031430b3d00acfacf39c5330fCAS |

Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M, Yokota A, Tomizawa K, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant & Cell Physiology 45, 672–683.
Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlWrtbw%3D&md5=5c9e99e767d02cde508213a9e070e7d7CAS |

Shimazaki K, Konde M (1987) Plasma membrane H+-ATPase in guard cell protoplasts from Vicia faba Plant & Cell Physiology 28, 893–900.
Plasma membrane H+-ATPase in guard cell protoplasts from Vicia faba Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsV2qtbg%3D&md5=fd88f9cac8222ff9d38cb67ee25a4780CAS |

Shingaki-Wells R, Millar AH, Whelan J, Narsai R (2014) What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant, Cell & Environment 37, 2260–2277.

Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, et al (2014) RCN/OsABCG5, an ATP‐binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). The Plant Journal 80, 40–51.
RCN/OsABCG5, an ATP‐binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOnsb%2FM&md5=a6f16f819b403c244254a58513575431CAS |

Sowa AW, Duff SMG, Guy PA, Hill RD (1998) Altering haemoglobin levels changes energy status in maize cells under hypoxia. Proceedings of the National Academy of Sciences of the United States of America 95, 10317–10321.
Altering haemoglobin levels changes energy status in maize cells under hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFGgsbg%3D&md5=c5773e478b4d1c4e0be571928dee8e03CAS |

Spickett CM, Smirnoff N, Ratcliffe RG (1993) An in vivo nuclear magnetic resonance investigation of ion transport in maize (Zea mays) and Spartina anglica roots during exposure to high salt concentrations. Plant Physiology 102, 629–638.
An in vivo nuclear magnetic resonance investigation of ion transport in maize (Zea mays) and Spartina anglica roots during exposure to high salt concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvF2rsL8%3D&md5=a69447857b95e3c8caac2aa1087193ccCAS |

Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite driven ATP synthesis in barley and rice roots mitochondria. Planta 226, 465–474.
Nitrite driven ATP synthesis in barley and rice roots mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Sru7o%3D&md5=714d4b1c59ae17164c01fcd983cda329CAS |

Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Annual Review of Plant Physiology 36, 175–208.
H+-translocating ATPases: advances using membrane vesicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFSis7g%3D&md5=645c603a6820a4087716b44e208c1cd3CAS |

Tadege M, Dupuis I, Kuhlemeier C (1999) Etahanolic fermentation: new functions for an old pathway. Trends in Plant Science 4, 320–325.
Etahanolic fermentation: new functions for an old pathway.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbgslKlsw%3D%3D&md5=26c3631dada85704461eeb29f56cf4fdCAS |

Takahashi H, Greenway H, Matsumura H, Tsutsumi N, Nakazono M (2014) Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water. Annals of Botany 113, 851–859.
Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslCrt7w%3D&md5=efc1f13c2e2507d7ea084a0952be9476CAS |

Thomas M, Ranson SL, Richardson JA (1973) ‘Plant physiology.’ (5th edn) (Longman: London)

Tomé F, Nägele T, Adamo M, Garg A, Marco-Ilorca C, Nukarinen E, Pedrotti L, Peviani A, Simeunovic A, Tatkiewicz A, Tomar M, Gamm M (2014) The low energy signalling network. Frontiers in Plant Science 5, 353

Van Aken O, Giraud E, Clifton R, Whelan J (2009) Alternative oxidase: a target and regulator of stress responses. Physiologia Plantarum 137, 354–361.
Alternative oxidase: a target and regulator of stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCgtb7M&md5=79d8aca874b0fd43e61e13566b812908CAS |

van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RAM, Pedersen O, Visser EJW, Larive CK, Pierik R, Bailey-Serres J, Voesenek LACJ, Sasidharan R (2013) Two Rumex species from contrasting hydrological niches regulate flooding tolerance through different mechanism. The Plant Cell 25, 4691–4707.
Two Rumex species from contrasting hydrological niches regulate flooding tolerance through different mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVOqsrk%3D&md5=319ca469c04e3903db7ad553b11071ecCAS |

Vartapetian BB, Andreeva TN, Generova IP, Polyakova LI, Mazlova IP, Dolchik YI, Stephanova AY (2003) Functional electron microscopy in studies on anaerobic stress. Annals of Botany 91, 155–172.
Functional electron microscopy in studies on anaerobic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVCksLc%3D&md5=f391c6afc10cf52284a2d56b37f519b2CAS |

Vicente J, Mendiondo GM, Movahedi M, Peirats-Llobet M, Juan YT, Shen YY, Dambire C, Smart K, Rodriguez PL, Charng YY, Gray JE, Holdsworth MJ (2012) The Cys-Arg/N-end rule pathway is a general sensor of abiotic stress in flowering plants. Current Biology 27, 3181–3190.

Wang F, Chen Z-H, Liu X, Colmer TD, Shabala L, Salih A, Zhou M, Shabala S (2017) Revealing the role of GORK channels and NADH oxidase in acclimation to hypoxia in Arabidoposis. Journal of Experimental Botany 68, 3191–3204.

Waters I, Morrell S, Greenway H, Colmer TD (1991) Effects of anoxia on wheat seedlings. II Effects of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation and sugar levels. Journal of Experimental Botany 42, 1437–1447.
Effects of anoxia on wheat seedlings. II Effects of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation and sugar levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XjvVWmsg%3D%3D&md5=731694ea72148562493c5d97b9c64bc7CAS |

Xia JH, Roberts JKM (1996) Regulation of H+ extrusion and cytoplasmic pH in maize root tips acclimated to a low-oxygen environment. Plant Physiology 111, 227–233.
Regulation of H+ extrusion and cytoplasmic pH in maize root tips acclimated to a low-oxygen environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFekurw%3D&md5=271a7c5443b5dcef2d022f0eb1817a2eCAS |

Xia JH, Saglio P, Roberts JKM (1995) Nucleotide levels do not critically determine survival of maize root tips acclimated to a low-oxygen environment. Plant Physiology 108, 589–595.
Nucleotide levels do not critically determine survival of maize root tips acclimated to a low-oxygen environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtlaqsr8%3D&md5=56596fac73f3fc92daa49a6209913073CAS |

Yoshida S (1994) Low temperature-induced acidosis in cultured mung bean (Vigna radiata (L.) Wilczec cells. Plant Physiology 104, 1131–1138.
Low temperature-induced acidosis in cultured mung bean (Vigna radiata (L.) Wilczec cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtF2ltL4%3D&md5=7f9739948f54f74a7432fdb7b90fb9d3CAS |

Zhang Q, Greenway H (1995) Membrane transport in anoxic rice coleoptiles and storage tissues of beet root. Australian Journal of Plant Physiology 22, 965–975.
Membrane transport in anoxic rice coleoptiles and storage tissues of beet root.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtF2jsLs%3D&md5=212564b871fcd3bad4290ccde81351d9CAS |

Zhang Q, Lauchli A, Greenway H (1992) Effects of anoxia on solute leakage from beetroot storage tissue. Journal of Experimental Botany 43, 897–905.
Effects of anoxia on solute leakage from beetroot storage tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1yhtrY%3D&md5=e64662abafa440611692011e4ff1f561CAS |

Zhang J, Li J, Wang X, Chen J (2011) OVP 1, a vacuolar H+-translocase inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiology and Biochemistry 49, 33–38.
OVP 1, a vacuolar H+-translocase inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance.Crossref | GoogleScholarGoogle Scholar |