Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Molecular characterisation and expression profiling of calcineurin B-like (CBL) genes in Chinese cabbage under abiotic stresses

Hee-Jeong Jung A , Md. Abdul Kayum A , Senthil Kumar Thamilarasan A , Ujjal Kumar Nath A , Jong-In Park A , Mi-Young Chung B , Yoonkang Hur C and Ill-Sup Nou A D
+ Author Affiliations
- Author Affiliations

A Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea.

B Department of Agricultural Education, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea.

C Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea.

D Corresponding author. Email: nis@sunchon.ac.kr

Functional Plant Biology 44(7) 739-750 https://doi.org/10.1071/FP16437
Submitted: 20 December 2016  Accepted: 28 April 2017   Published: 24 May 2017

Abstract

Calcium signals act as a second messenger in plant responses to various abiotic stresses, which regulate a range of physiological processes. Calcium-binding proteins, like calcineurin B-like (CBL) proteins, belong to a unique group of calcium sensors that play a role in calcium signalling. However, their identities and functions are unknown in Chinese cabbage. In this study, 17 CBL genes were identified from the Brassica rapa L. (Chinese cabbage) database and Br135K microarray datasets. They were used to construct a phylogenetic tree with known CBL proteins of other species. Analysis of genomic distribution and evolution revealed different gene duplication in Chinese cabbage compared to Arabidopsis. The microarray expression analysis showed differential expression of BrCBL genes at various temperatures. Organ-specific expression was observed by RT–PCR, and qRT–PCR analyses revealed responsiveness of BrCBL genes to cold, drought and salt stresses. Our findings confirm that CBL genes are involved in calcium signalling and regulate responses to environmental stimuli, suggesting this family gene have crucial role to play in plant responses to abiotic stresses. The results facilitate selection of candidate genes for further functional characterisation. In addition, abiotic stress-responsive genes reported in this study might be exploited for marker-aided backcrossing of Chinese cabbage.

Additional keywords: calcium signalling, CBL family genes, expression analysis, gene evolution, microsynteny, protein interaction.


References

Abdula SE, Lee HJ, Ryu HJ, Kang KK, Nou IS, Sorrells ME, Cho YG (2016) Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant Molecular Biology Reporter 34, 501–511.
Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Wqsb3I&md5=1e90281b3d2e898e8358d9cb784adebcCAS |

Bancroft I (2001) Duplicate and diverge: the evolution of plant genome microstructure. Trends in Genetics 17, 89–93.
Duplicate and diverge: the evolution of plant genome microstructure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFaku78%3D&md5=504f6b1e17c3491ff9979a4cfb0167beCAS |

Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the cbl calcium sensor/cipk protein kinase network. Planta 219, 915–924.
Integration and channeling of calcium signaling through the cbl calcium sensor/cipk protein kinase network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKgtbw%3D&md5=3f224d5efeb793587dbde0c9e4e8431dCAS |

Brown AP, Dunn MA, Goddard NJ, Hughes MA (2001) Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L.) gene blt101.1. Planta 213, 770–780.
Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L.) gene blt101.1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Orsbs%3D&md5=fa988f98b21fe280c255d067791600d0CAS |

Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6)component is involved in the plant response to abiotic stress and ABA signalling. Journal of Experimental Botany 63, 6211–6222.
The Brassica napus Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6)component is involved in the plant response to abiotic stress and ABA signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFygtb3K&md5=308deeca96eb563396b7cee4abb2e88fCAS |

Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology 129, 469–485.
Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jsb8%3D&md5=a1b5383a30e5bb93f44a61b82dd47697CAS |

Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biology 11, 136
BRAD, the genetics and genomics database for Brassica plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaksr7N&md5=edf2d520015c76c3e4333800916f334fCAS |

Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1 a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell 15, 1833–1845.
CBL1 a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Wlsbw%3D&md5=32f1c64371f07105f3985f28fac8a600CAS |

Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant Journal 52, 223–239.
Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSis7nN&md5=f96440b556285c9044525b0a1dd6ad0bCAS |

Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells 29, 159–165.
Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1entLc%3D&md5=e6d1e3433c20e38eed20cdac3568f0e8CAS |

Drerup MM, Schlucking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Molecular Plant 6, 559–569.
The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWjtbc%3D&md5=f392c09d3e94d569b5f31bb4d3dc80f4CAS |

Du W, Lin H, Chen S, Wu Y, Zhang J, Fuglsang AT, Palmgren MG, Wu W, Guo Y (2011) Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis. Plant Physiology 156, 2235–2243.
Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrurrL&md5=43e3f294ba16ba1b3ee471472df5cf04CAS |

Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 33, 751–763.
OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislWiu7w%3D&md5=bec02a347588b09c066a0acb70a2669aCAS |

Gilroy S, Trewavas A (2001) Signal processing and transduction in plant cells: the end of the beginning? Nature Reviews. Molecular Cell Biology 2, 307–314.
Signal processing and transduction in plant cells: the end of the beginning?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis12rtbc%3D&md5=faeb9c0a3d58d17e34b6e105dd7e89aeCAS |

Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29, 1023–1026.
GSDS: a gene structure display server.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVGjs7s%3D&md5=6608f5df33e35cb5d64aaa1c010b3f9bCAS |

Hashimoto K, Eckert C, Anschutz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J (2012) Phosphorylation of calcineurin b-like (cbl) calcium sensor proteins by their cbl-interacting protein kinases (cipks) is required for full activity of cbl-cipk complexes toward their target proteins. Journal of Biological Chemistry 287, 7956–7968.
Phosphorylation of calcineurin b-like (cbl) calcium sensor proteins by their cbl-interacting protein kinases (cipks) is required for full activity of cbl-cipk complexes toward their target proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFCkur0%3D&md5=3cbd1b8466586efeda0e485bcb0e6072CAS |

Huang C, Ding S, Zhang H, Du H, An L (2011) CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Science 181, 57–64.
CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyrsrY%3D&md5=cf243a5ce97a58baec175090172a1f59CAS |

Hwang YS, Bethke PC, Cheong YH, Chang HS, Zhu T, Jones RL (2005) A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiology 138, 1347–1358.
A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvV2lu7w%3D&md5=10ee2bab9a6f09ad1cb038bd91ab2338CAS |

Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires n-myristoylation and calcium binding. The Plant Cell 12, 1667–1678.
SOS3 function in plant salt tolerance requires n-myristoylation and calcium binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVyltrk%3D&md5=17e7678c1bb3b8539154afe502741644CAS |

Jung HJ, Dong X, Park JI, Thamilarasan SK, Lee SS, Kim YK, Lim YP, Nou IS, Hur Y (2014) Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br135K oligomeric chip. PLoS One 9, e106069
Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br135K oligomeric chip.Crossref | GoogleScholarGoogle Scholar |

Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling & Behavior 5, 233–238.
Cytosolic calcium and pH signaling in plants under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schultke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. The Plant Journal 52, 473–484.
The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2jtbfJ&md5=97bfa2ef595127f3359b71b2beadcc4bCAS |

Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science 6, 262–267.
Abiotic stress signalling pathways: specificity and cross-talk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjs7Y%3D&md5=6a0a88b74a0c1bbeee1bd06bd3f58c78CAS |

Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis and related genera Brassicaceae). Molecular Biology and Evolution 17, 1483–1498.
Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis and related genera Brassicaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Cnsb0%3D&md5=12efc416e6312bcaca6ccca656b74aa3CAS |

Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology 134, 43–58.
Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagtbo%3D&md5=f96bee0ed04f21a12843833f2514eef3CAS |

Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Research 19, 1639–1645.
Circos: an information aesthetic for comparative genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjsLvJ&md5=4c6856021a0c934b9f846f567bee0c5aCAS |

Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin b-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America 96, 4718–4723.
Genes for calcineurin b-like proteins in Arabidopsis are differentially regulated by stress signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1ylt7Y%3D&md5=2a09b8062a7849d453f24f1e4869a633CAS |

Lee J, Song H, Han CT, Lim Y, Chung SM, Hur Y (2010) Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage, chiifu and kenshin. Genes & Genomics 32, 247–257.
Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage, chiifu and kenshin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2ntrjO&md5=f56532a21fb368cafe53ad71eace934eCAS |

Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. The Plant Cell 21, 1607–1619.
Phosphorylation of SOS3-like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVCqtLY%3D&md5=af0b8a4a606bf1e5ff3c73fa3eafbaa1CAS |

Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97, 3730–3734.
The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlajsrs%3D&md5=f5b6df3eb9041ce92dbb711a56c8cc31CAS |

Liu Z, Kong L, Zhang M, Lv Y, Liu Y, Zou M, Lu G, Cao J, Yu X (2013) Genome-wide identification, phylogeny, evolution and expression patterns of ap2/erf genes and cytokinin response factors in Brassica rapa ssp. pekinensis. PLoS One 8, e83444
Genome-wide identification, phylogeny, evolution and expression patterns of ap2/erf genes and cytokinin response factors in Brassica rapa ssp. pekinensis.Crossref | GoogleScholarGoogle Scholar |

Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.
The evolutionary fate and consequences of duplicate genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVChsb8%3D&md5=42be55ae8b5aada6015514b3d0eaaa86CAS |

Mähs A, Steinhorst L, Han JP, Shen LK, Wang Y, Kudla J (2013) The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis. Molecular Plant 6, 1149–1162.
The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiology 143, 1001–1012.
Conservation of the salt overly sensitive pathway in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWnt7s%3D&md5=8c77821f64e8a2e301e27f5929580984CAS |

Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Research 10, 459–472.
A catalogue of splice junction sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtFKrurw%3D&md5=1552bb671687a3ed5cd874b7f91a1e5bCAS |

Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29a gene in response to dehydration and high-salinity stresses. The Plant Journal 34, 137–148.
Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29a gene in response to dehydration and high-salinity stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOgt74%3D&md5=875f9ff74dfd1dbcc6862f08030e81b0CAS |

Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418–426.

Olías R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane NA+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment 32, 904–916.
The plasma membrane NA+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs.Crossref | GoogleScholarGoogle Scholar |

Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis The Plant Cell 16, 1912–1924.
The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSqtb4%3D&md5=fc4f6e681991ce4b560480d4db6fcad8CAS |

Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Park SH, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM, Lee IJ, Kwon TR, Kim YH, Yeo US, Yi G, Son D, Han CD (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Molecules and Cells 30, 19–27.
OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGmtbs%3D&md5=fc07b5aab92afbaa67d8ed51c1a38a3fCAS |

Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) Scabp8/cbl10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19, 1415–1431.
Scabp8/cbl10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeltb4%3D&md5=4e10f2d1762e0e587ccf8f2b24c52766CAS |

Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory c-terminal domain. Proceedings of the National Academy of Sciences of the United States of America 108, 2611–2616.
Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory c-terminal domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFemsbY%3D&md5=27ef0738f5f1c1d1988078c0d304a5f4CAS |

Sathyanarayanan PV, Poovaiah BW (2004) Decoding Ca2+ signals in plants. CRC Critical Reviews in Plant Science 23, 1–11.
Decoding Ca2+ signals in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislKms7s%3D&md5=88495d74abc47cf08e8bb225d66e3e76CAS |

Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytologist 151, 35–66.
Calmodulin as a versatile calcium signal transducer in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFGkurc%3D&md5=c34f75a9d3625eca8781106a672b2217CAS |

Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G (2015) Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biology 15, 269
Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar |

Tai F, Yuan Z, Li S, Wang Q, Liu F, Wang W (2016) ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. Plant Cell, Tissue and Organ Culture 124, 459–469.
ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVeqsLrI&md5=e1323d5665322744ab6e8c4f5c522989CAS |

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=0304eb60d01d281ee6e41bc3d051047bCAS |

Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology 74, 367–380.
The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KqurvE&md5=589e2961a02f481ffbcef3b27390e8c7CAS |

Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biologia Plantarum 55, 603–613.
An insight into the drought stress induced alterations in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWrtb%2FO&md5=a15a6fdc45d081c85b73c2503bf70d5bCAS |

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustalW windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The clustalW windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=bf877b3e4e724b9913477e80b506e92dCAS |

Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI (1988) Myristoyl CoA : protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. The Journal of Biological Chemistry 263, 1784–1790.

Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin b-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology 65, 733–746.
Overexpression of a putative maize calcineurin b-like protein in Arabidopsis confers salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCntLvE&md5=e569f073d666f9fe7ad9e5fdb02c3861CAS |

Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. The Plant Cell 14, S165–S183.
Cell signaling during cold, drought and salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksV2hurk%3D&md5=d9e167a1f2df9208032fb74e7e56acf4CAS |

Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J (2006) KaKs_calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics & Bioinformatics 4, 259–263.
KaKs_calculator: calculating Ka and Ks through model selection and model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktleisLc%3D&md5=5b165a63a802c13a61065f57863c0d6bCAS |

Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang YQ (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biology 14, 3–24.