Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Why do plants lack sodium pumps and would they benefit from having one?

Jesper T. Pedersen A and Michael Palmgren A B
+ Author Affiliations
- Author Affiliations

A Center for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.

B Corresponding author. Email: palmgren@plen.ku.dk

Functional Plant Biology 44(5) 473-479 https://doi.org/10.1071/FP16422
Submitted: 9 December 2016  Accepted: 31 January 2017   Published: 28 March 2017

Abstract

The purpose of this minireview is to discuss the feasibility of creating a new generation of salt-tolerant plants that express Na+/K+-ATPases from animals or green algae. Attempts to generate salt-tolerant plants have focussed on increase the expression of or introducing salt stress-related genes from plants, bryophytes and yeast. Even though these approaches have resulted in plants with increased salt tolerance, plant growth is decreased under salt stress and often also under normal growth conditions. New strategies to increase salt tolerance are therefore needed. Theoretically, plants transformed with an animal-type Na+/K+-ATPase should not only display a high degree of salt tolerance but should also reduce the stress response exhibited by the first generation of salt-tolerant plants under both normal and salt stress conditions. The biological feasibility of such a strategy of producing transgenic plants that display improved growth on saline soil but are indistinguishable from wild-type plants under normal growth conditions, is discussed.

Additional keywords: algal Na+/K+-ATPase, Na+/K+-ATPase, salt tolerance, vascular plants.


References

An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation : proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter. The Plant Journal 49, 718–728.
AtNHX8, a member of the monovalent cation : proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlGmtrs%3D&md5=eb627d1af18ec9e3b37883a3d2499ca3CAS |

An J, Song A, Guan Z, Jiang J, Chen F, Lou W, Fang W, Liu Z, Chen S (2014) The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Molecular Biology Reports 41, 4155–4162.
The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1Whtrs%3D&md5=141ac5a29e6b3a7da3e57ff5a09fd2bfCAS |

Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Annals of Botany 115, 481–494.
Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa.Crossref | GoogleScholarGoogle Scholar |

Braun Y, Hassidim M, Lerner HR, Reinhold L (1986) Studies on H+-translocating ATPases in plants of varying resistance to salinity: I. Salinity during growth modulates the proton pump in the halophyte Atriplex nummularia. Plant Physiology 81, 1050–1056.
Studies on H+-translocating ATPases in plants of varying resistance to salinity: I. Salinity during growth modulates the proton pump in the halophyte Atriplex nummularia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlSkt7o%3D&md5=3e9fadcba2567400220aee0d22e68c37CAS |

Colina C, Rosenthal JJ, DeGiorgis JA, Srikumar D, Iruku N, Holmgren M (2007) Structural basis of Na+/K+-ATPase adaptation to marine environments. Nature Structural & Molecular Biology 14, 427–431.
Structural basis of Na+/K+-ATPase adaptation to marine environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslyhtLc%3D&md5=efef77b79bffbc3fed508bc19a65b08fCAS |

Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant, Cell & Environment 34, 947–961.
Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Sgtbw%3D&md5=6ebee9f96b41ba7b69cfd9e5b1280650CAS |

De Weer P, Gadsby DC, Rakowski RF (1988) Voltage dependence of the Na–K pump. Annual Review of Physiology 50, 225–241.
Voltage dependence of the Na–K pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVahtbg%3D&md5=7df57332afdca0c1c522cafc45226b8bCAS |

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends in Plant Science 19, 371–379.
Plant salt-tolerance mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVWmsb8%3D&md5=683b482f173d76585c45e28c77c5efeaCAS |

Drew DP, Hrmova M, Lunde C, Jacobs AK, Tester M, Fincher GB (2011) Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi. Biochimica et Biophysica Acta 1808, 1483–1492.
Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFalur8%3D&md5=022a712cc4a764b3a73a43ccf0c05ec4CAS |

Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Molecular Plant 9, 323–337.
Plasma membrane H+-ATPase regulation in the center of plant physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvVGqsrk%3D&md5=eba5f2d641f10ae5f45d5a588b0c0606CAS |

Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports 33, 277–288.
A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KjurvK&md5=1976abcd980a2c96020adcc978f3a92aCAS |

Flowers TJ (2004) Improving crop salt tolerance. Journal of Experimental Botany 55, 307–319.
Improving crop salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1egtQ%3D%3D&md5=0baf49de8f072082787e25f7d694586bCAS |

Food and Agriculture Organization (2000) Salt-affected soils. (Food and Agriculture Organization of the United Nations) Available at http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ [Verified 24 February 2017].

Garrahan PJ, Glynn IM (1967) The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. The Journal of Physiology 192, 237–256.
The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvFygtLo%3D&md5=320e78e6cf50cc26c3f7340036a521cbCAS |

Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences of the United States of America 98, 11444–11449.
Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1yqurc%3D&md5=fa9421e9d11f6baf10db36186e27f2fcCAS |

Gevaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiology 144, 1763–1776.
Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVOgsrs%3D&md5=ca89e692112be1af27a18c811881859eCAS |

Glitsch HG (2001) Electrophysiology of the sodium–potassium-ATPase in cardiac cells. Physiological Reviews 81, 1791–1826.

Goyal E, Singh RS, Kanika K (2013) Isolation and functional characterization of Salt overly sensitive 1 (SOS1) gene promoter from Salicornia brachiata. Biologia Plantarum 57, 465–473.
Isolation and functional characterization of Salt overly sensitive 1 (SOS1) gene promoter from Salicornia brachiata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rsrvO&md5=b1980982ee492809964c94e7baad6007CAS |

Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92, 19–31.
Sodium (Na+) homeostasis and salt tolerance of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsleqtr8%3D&md5=4f892a71fadeaab2fae742840ebf3763CAS |

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51, 463–499.
Plant cellular and molecular responses to high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7s%3D&md5=845592cb38fbab77280d686408c29f98CAS |

Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280, 918–921.
A role for the AKT1 potassium channel in plant nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFKlurk%3D&md5=01f4bd008e96c75e8d38b7e8a9032ed5CAS |

Jacobs A, Ford K, Kretschmer J, Tester M (2011) Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. Plant Biotechnology Journal 9, 838–847.
Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtrjO&md5=9377f627bbe695c4fcfafeaca5164fa2CAS |

Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature 502, 201–206.
Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqtLnO&md5=f9df77bddc41044ce514aef20f4252c1CAS |

Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389, 33–39.
The origin and early evolution of plants on land.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVClt7w%3D&md5=a427355065e69324cb7c27ec709bb6c5CAS |

Kong X, Gao X, Li W, Zhao J, Zhao Y, Zhang H (2008) Overexpression of ENA1 from yeast increases salt tolerance in Arabidopsis. Journal of Plant Biology 51, 159–165.
Overexpression of ENA1 from yeast increases salt tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlSrtb4%3D&md5=123d8a7fbcd6c148c3a51733a3f4f20cCAS |

Lunde C, Drew DP, Jacobs AK, Tester M (2007) Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress. Plant Physiology 144, 1786–1796.
Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVOgsrk%3D&md5=32a2c2375a713163e4141e3891dfce89CAS |

Maathuis FJ, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Frontiers in Plant Science 5, 467
Regulation of Na+ fluxes in plants.Crossref | GoogleScholarGoogle Scholar |

Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the Salt Overly Sensitive pathway in rice. Plant Physiology 143, 1001–1012.
Conservation of the Salt Overly Sensitive pathway in rice.Crossref | GoogleScholarGoogle Scholar |

Mitchell TJ, Zugarramurdi C, Olivera JF, Gatto C, Artigas P (2014) Sodium and proton effects on inward proton transport through Na/K pumps. Biophysical Journal 106, 2555–2565.
Sodium and proton effects on inward proton transport through Na/K pumps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCju77K&md5=5152636b357843f0d4073612b805e372CAS |

Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. The Plant Cell 21, 2163–2178.
Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=b30f07d810b3303a6dcacfac2b459d6cCAS |

Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30, 360–364.
Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOgu7w%3D&md5=edbe0201ba08bfcafbef1d46ec2d36c1CAS |

Nakayama H, Yoshida K, Shinmyo A (2004) Yeast plasma membrane Ena1p ATPase alters alkali-cation homeostasis and confers increased salt tolerance in tobacco cultured cells. Biotechnology and Bioengineering 85, 776–789.
Yeast plasma membrane Ena1p ATPase alters alkali-cation homeostasis and confers increased salt tolerance in tobacco cultured cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitV2gu7Y%3D&md5=d5f137ea5343952ea87f4689b78deef4CAS |

Nieves-Cordones M, Martinez V, Benito B, Rubio F (2016) Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Frontiers in Plant Science 7, 992
Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots.Crossref | GoogleScholarGoogle Scholar |

Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiology 103, 713–718.
NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislGlug%3D%3D&md5=fce012e3a7c33fc97ce89097f7540a45CAS |

Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiology 151, 210–222.
Loss of halophytism by interference with SOS1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjsbzL&md5=307249a0d80e4f6a0a2024d343affddeCAS |

Palmgren MG (1998) Proton gradients and plant growth: roles of the plasma membrane H+-ATPase. Advances in Botanical Research 28, 1–70.
Proton gradients and plant growth: roles of the plasma membrane H+-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlGgs7g%3D&md5=a1409d700c709179cbb5634fb84b63bfCAS |

Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany 57, 1181–1199.
Alkali cation exchangers: roles in cellular homeostasis and stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Gls78%3D&md5=90cb6e5334fe778112b11734a2a87337CAS |

Pedersen CN, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Frontiers in Plant Science 3, 31
Evolution of plant P-type ATPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVejsbs%3D&md5=fe62ceec8f89a5745dc9a60a76b48da4CAS |

Perez-Prat E, Narasimhan ML, Niu X, Botella MA, Bressan RA, Valpuesta V, Hasegawa PM, Binzel ML (1994) Growth cycle stage-dependent NaCl induction of plasma membrane H+-ATPase mRNA accumulation in de-adapted tobacco cells. Plant, Cell & Environment 17, 327–333.
Growth cycle stage-dependent NaCl induction of plasma membrane H+-ATPase mRNA accumulation in de-adapted tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlWgsbo%3D&md5=72e057dfad77c883d594c7f411dedde9CAS |

Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. Bioscience 54, 909–918.
Water resources: agricultural and environmental issues.Crossref | GoogleScholarGoogle Scholar |

Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In Salinity: Environment – Plants – Molecules’. (Eds A Läuchli, U Lüttge). pp. 3–20.(Springer Netherlands: Dordrecht)

Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Applied and Environmental Microbiology 63, 4005–4009.

Rengasamy P (2006) World salinization with emphasis on Australia. Journal of Experimental Botany 57, 1017–1023.
World salinization with emphasis on Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Gls74%3D&md5=e90f4628f773047071bf155c33703f8dCAS |

Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. Journal of Experimental Botany 57, 1149–1160.
High-affinity potassium and sodium transport systems in plants.Crossref | GoogleScholarGoogle Scholar |

Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Current Opinion in Biotechnology 26, 115–124.
Salt resistant crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Cns7c%3D&md5=f3a6fb79e67daff6fbecfb0412ed0c61CAS |

Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. International Review of Cytology 165, 1–52.
Salt tolerance in plants and microorganisms: toxicity targets and defense responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Kmsbw%3D&md5=fc5f0e8a7f760860503540ed07e3d857CAS |

Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America 97, 6896–6901.
The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFahtrs%3D&md5=51a73eb0b953c223832e6d9a44c51ad6CAS |

Shi H, Lee BH, Wu SJ, Zhu JK (2002a) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21, 81–85.
Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Shi H, Quintero FJ, Pardo JM, Zhu JK (2002b) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14, 465–477.
The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVKgur0%3D&md5=ae9e57755ef77fefca2e2757cde52838CAS |

Taylor AR, Brownlee C, Wheeler GL (2012) Proton channels in algae: reasons to be excited. Trends in Plant Science 17, 675–684.
Proton channels in algae: reasons to be excited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqtL7J&md5=dc010356b741acd8a742cbe29d758cb8CAS |

Vagin O, Tokhtaeva E, Sachs G (2006) The role of the β1 subunit of the Na,K-ATPase and its glycosylation in cell–cell adhesion. The Journal of Biological Chemistry 281, 39573–39587.
The role of the β1 subunit of the Na,K-ATPase and its glycosylation in cell–cell adhesion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlagsb7P&md5=23cc1cbabdd3d5843c4bd23fbbd70f48CAS |

Vedovato N, Gadsby DC (2014) Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps. The Journal of General Physiology 143, 449–464.
Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVGltbY%3D&md5=114e614af212f65f0bb0e13279524c1eCAS |

Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science 6, 873
Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.Crossref | GoogleScholarGoogle Scholar |

Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Molecular Biology Reports 38, 4813–4822.
Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2htb%2FN&md5=9159e1f0cf9695e396349b3068b60475CAS |

Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, Xu B, Jin Z (2014) A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biology 14, 59
A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses.Crossref | GoogleScholarGoogle Scholar |

Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology 12, 188
The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVSqs78%3D&md5=d351676655db21a0aac6a37a1935b892CAS |

Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant 2, 22–31.
Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2msbc%3D&md5=0ff54c5bf6e4d2b9a6005baf514ef2b1CAS |

Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology 169, 255–261.
SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslSqsw%3D%3D&md5=dd475e0bbf4b073a3a6cc94a20b5b56bCAS |

Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441–445.
Regulation of ion homeostasis under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVKhsbs%3D&md5=bf1aded61d8d247167eff1354b005b44CAS |

Zhu J-K (2007) Plant salt stress. In ‘Encyclopedia of Life Sciences’. pp. 1–3. (John Wiley and Sons: Hoboken, NJ)