Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Plant ion channels and transporters in herbivory-induced signalling

Shuitian Luo A B * , Xiao Zhang A B * , Jinfei Wang A B , Chunyang Jiao A B , Yingying Chen A B and Yingbai Shen A B C
+ Author Affiliations
- Author Affiliations

A College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100 083, China.

B National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100 083, China.

C Corresponding author. Email: ybshen@bjfu.edu.cn

Functional Plant Biology 45(2) 111-131 https://doi.org/10.1071/FP16318
Submitted: 21 June 2016  Accepted: 6 December 2016   Published: 14 March 2017

Abstract

In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.

Additional keywords: calcium signaling, electrical signal, defense response, green leaf volatile, herbivory, ion flux, jasmonic acid, ROS, signal transduction.


References

Abdul-Awal SM, Hotta CT, Davey MP, Dodd AN, Smith AG (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis. Plant Physiology 171, 623–631.
NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsV2nsbfF&md5=6043c2792d6d655952961565cfb19a30CAS |

Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW (2015) Cues from chewing insects – the intersection of DAMPs, HAMPs, MAMPs and effectors. Current Opinion in Plant Biology 26, 80–86.
Cues from chewing insects – the intersection of DAMPs, HAMPs, MAMPs and effectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsVWktr4%3D&md5=a5be24e315cde43729d31e32c349eb1cCAS |

Alborn HT, Turlings TC, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945–949.
An elicitor of plant volatiles from beet armyworm oral secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1agsbg%3D&md5=639f2a27600e7e01b009cc942117ed3dCAS |

Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231, 1237–1249.
Polyamines: molecules with regulatory functions in plant abiotic stress tolerance.Crossref | GoogleScholarGoogle Scholar |

Alméras E, Stolz S, Vollenweider S, Reymond P, Méne-Saffrané L, Farmer EE (2003) Reactive electrophile species active defence gene expression in Arabidopsis. The Plant Journal 34, 205–216.
Reactive electrophile species active defence gene expression in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases ‘on the move’: an update. Plant Physiology and Biochemistry 48, 560–564.
Plant amine oxidases ‘on the move’: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlCrtrc%3D&md5=6908b81e083de97545e648d608326513CAS |

Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175, 1257–1266.
Plants respond to leaf vibrations caused by insect herbivore chewing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cfptFertA%3D%3D&md5=394b6b81be91e99fb3a4ecc5c6887590CAS |

Arimura GI, Maffei ME (2010) Calcium and secondary CPK signaling in plants in response to herbivore attack. Biochemical and Biophysical Research Communications 400, 455–460.
Calcium and secondary CPK signaling in plants in response to herbivore attack.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GjtrjL&md5=af7fae18a250ef48f91c092d27821620CAS |

Arimura GI, Sawasaki T (2010) Arabidopsis CPK3 plays extensive roles in various biological and environmental responses. Plant Signaling & Behavior 5, 1263–1265.
Arabidopsis CPK3 plays extensive roles in various biological and environmental responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlarsrs%3D&md5=37b18719a8428ac25c47cf935d24e584CAS |

Asai N, Nishioka T, Takabayashi J, Furuichi T (2009) Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells. Plant Signaling & Behavior 4, 294–300.
Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVyqu74%3D&md5=098bc79507758501294a22c0ff005c6bCAS |

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229–1240.
ROS as key players in plant stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htLg%3D&md5=957fd55f5e66bcc91656cf9d3ecac129CAS |

Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R (2016) Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Research 26, 812–825.
Venus flytrap carnivorous lifestyle builds on herbivore defense strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFSrsL%2FI&md5=174fa30048df223ebba7ec32a6de7094CAS |

Beyhl D, Hortensteiner S, Martinoia E, Farmer EE, Fromm J, Marten I, Hedrich R (2009) The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. The Plant Journal 58, 715–723.
The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVSqtr8%3D&md5=2985f518ecebcbd4e28b5ffefe8157a2CAS |

Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8, 521–539.
Signaling mechanisms in pattern-triggered immunity (PTI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsFelsLY%3D&md5=d2c41318ce832f2e1881a3e0f16e992dCAS |

Böhm J, Scherzer S, Krol E, Kreuzer I, Meyer KV, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KAS, Rennenberg H, Shabala S, Neher E, Hedrich R (2016) The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Current Biology 26, 286–295.
The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake.Crossref | GoogleScholarGoogle Scholar |

Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60, 379–406.
A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFGlsL0%3D&md5=e66cd4b5918a5e5915281d80057c8201CAS |

Bonaventure G (2011) The Nicotiana attenuata LECTIN RECEPTOR KINASE 1 is involved in the perception of insect feeding. Plant Signaling & Behavior 6, 2060–2063.
The Nicotiana attenuata LECTIN RECEPTOR KINASE 1 is involved in the perception of insect feeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVSlsr0%3D&md5=98ac88add2e87741b4cd972d8e5843adCAS |

Bonaventure G, Gfeller A, Proebsting WM, Hoerstensteiner S, Chételat A, Martinoia E, Farmer EE (2007a) A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. The Plant Journal 49, 889–898.
A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WrtLY%3D&md5=9a0da361c717ea3ba6e1ba588cf05f1fCAS |

Bonaventure G, Gfeller A, Rodríguez VM, Armand F, Farmer EE (2007b) The fou2 gain-of-function allele and the wild-type allele of two pore channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. Plant & Cell Physiology 48, 1775–1789.
The fou2 gain-of-function allele and the wild-type allele of two pore channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitF2qtb8%3D&md5=9d90f8cd7bf634869ae6d545b7f3ec3fCAS |

Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends in Plant Science 16, 294–299.
Herbivore-associated elicitors: FAC signaling and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrs78%3D&md5=b7b0d6f4b40d5de2d40eaacbb730b94bCAS |

Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Frontiers in Plant Science 2, 85
Calcium efflux systems in stress signaling and adaptation in plants.Crossref | GoogleScholarGoogle Scholar |

Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends in Plant Science 18, 30–40.
CDPKs in immune and stress signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlerurzM&md5=04ec8b35a680820d24afa629711f12a6CAS |

Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiology 154, 1158–1171.
Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ntr7P&md5=3ab8f9c584c4f0dc29e3f09fd1e3671dCAS |

Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME (2010) Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 232, 719–729.
Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslWrurs%3D&md5=844d6726e4e9afd8bc61c1c5211b22d4CAS |

Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME (2012) Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae and Pseudomonas syringae in Arabidopsis. PLoS One 7, e46673
Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae and Pseudomonas syringae in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSqu73N&md5=c34e4e55a41340b30dc8190ea9178cd6CAS |

Bricchi I, Occhipinti A, Bertea CM, Zebelo SA, Brillada C, Verrillo F, De Castro C, Molinaro A, Faulkner C, Maule AJ, Maffei ME (2013) Separation of early and late responses to herbivory in Arabidopsis by changing plasmodesmal function. The Plant Journal 73, 14–25.
Separation of early and late responses to herbivory in Arabidopsis by changing plasmodesmal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVKktb8%3D&md5=5982622b00a11ee5cc7bb6242d871b48CAS |

Cao Y, Tanaka K, Nguyen CT, Stacey G (2014) Extracellular ATP is a central signaling molecule in plant stress responses. Current Opinion in Plant Biology 20, 82–87.
Extracellular ATP is a central signaling molecule in plant stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2nt7vE&md5=0501ac66bdc2397c92d4d0c418ef1db6CAS |

Chauvin A, Caldelari D, Wolfender JL, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytologist 197, 566–575.
Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVynsrrF&md5=79d0a57515560c4fd7833328af6b5372CAS |

Chauvin A, Lenglet A, Wolfender JL, Farmer EE (2016) Paired hierarchical organization of 13-lipoxygenases in Arabidopsis. Plants 5, 16
Paired hierarchical organization of 13-lipoxygenases in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Chehab EW, Yao C, Henderson Z, Kim S, Braam J (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Current Biology 22, 701–706.
Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1KgtLw%3D&md5=15ffd7a6b63df035cfd99a87d84e3245CAS |

Chin K, Moeder W, Yoshioka K (2009) Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. Botany 87, 668–677.
Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaksr3J&md5=0c396fe2a5a37bb93f895cadcefeaf46CAS |

Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014a) Identification of a plant receptor for extracellular ATP. Science 343, 290–294.
Identification of a plant receptor for extracellular ATP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtV2ksg%3D%3D&md5=14d6d3be5e418a9c9794f85c028cbfedCAS |

Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014b) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America 111, 6497–6502.
Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslGgtbw%3D&md5=c4ddb3c79dca1d20ece3128be6e5e2d2CAS |

Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends in Plant Science 11, 80–88.
Functions of amine oxidases in plant development and defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFOjurs%3D&md5=1ec112e2747ca03f8f9f0296619a98e4CAS |

Cowley T, Walters D (2005) Local and systemic changes in arginine decarboxylase activity, putrescine levels and putrescine catabolism in wounded oilseed rape. New Phytologist 165, 807–811.
Local and systemic changes in arginine decarboxylase activity, putrescine levels and putrescine catabolism in wounded oilseed rape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGjtLk%3D&md5=367eff5973c09a92b178b2602ddb3810CAS |

Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334–344.
Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFOhtg%3D%3D&md5=a63002055511d3c519d29777c8c194bbCAS |

Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Science 116, 81–88.
Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2lsA%3D%3D&md5=eede4b7865478d7d00a7ac9b79d5f2d2CAS |

Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal 49, 377–386.
Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyisLk%3D&md5=7f81ca92215785e5d543de10ac001c1aCAS |

Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. The Plant Journal 58, 903–913.
Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVequrk%3D&md5=3e06af42c477866ea7bca58dbda061b7CAS |

Demidchik V, Shang Z, Shin R, Colaco R, Laohavisit A, Shabala S, Davies JM (2011) Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. Plant Physiology 156, 1375–1385.
Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWks7g%3D&md5=63b4f9215c220c8a15086e2e519a63e5CAS |

Dietrich P, Anschütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biology 12, 80–93.
Physiology and biophysics of plant ligand-gated ion channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOns7vM&md5=ec9ac9bb1ad198a004ad8e0c0e8cbbaaCAS |

Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annual Review of Plant Biology 61, 593–620.
The language of calcium signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsbs%3D&md5=1f77b23068825c905b1821b2b6a98eb7CAS |

Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Molecular Plant 6, 559–569.
The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWjtbc%3D&md5=f392c09d3e94d569b5f31bb4d3dc80f4CAS |

Dreyer I, Michard E, Lacombe B, Thibaud JB (2001) A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or ‘leak’ current. FEBS Letters 505, 233–239.
A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or ‘leak’ current.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVylsb8%3D&md5=4de3747fbffe71e727bc39988df025c7CAS |

Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences of the United States of America 110, 8744–8749.
Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSjtb%2FE&md5=673cb1b9d1b09b006d6c14dde1620ce6CAS |

Engelberth J, Contreras CF, Dalvi C, Li T, Engelberth M (2013) Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS One 8, e77465
Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Kiur%2FL&md5=f7da89454d3439af17149c8041241c48CAS |

Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiology 171, 1771–1784.
A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVaqtL%2FN&md5=952f013bee98d3d74b0381e46c43d5baCAS |

Farmer EE, Gasperini D, Acosta IF (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytologist 204, 282–288.
The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFymtbzN&md5=a4c754d62ed5037a3d899e1a493ca9acCAS |

Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. The Plant Journal 7, 381–389.
Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltFCgsLc%3D&md5=3e3b35c6249b36df50e9620bf8f94bf8CAS |

Felle HH, Herrmann A, Hückelhoven R, Kogel KH (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma 227, 17–24.
Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Kr&md5=b49cb343ef8fd664c5dcfe9e034eef3cCAS |

Fisahn J, Herde O, Willmitzer L, Peña-Cortés H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINI1 gene expression. Plant & Cell Physiology 45, 456–459.
Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINI1 gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKhtb8%3D&md5=1c627ef6764a46d41e312fe3f64d510dCAS |

Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000prime Reports 6, 12703
Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence?Crossref | GoogleScholarGoogle Scholar |

Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.
Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlGgtLg%3D&md5=dc90ce6dd130e8a7fd34100cf7f77cd1CAS |

Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the venus flytrap snaps. Nature 433, 421–425.
How the venus flytrap snaps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1WjtA%3D%3D&md5=812e3738583498b85b081b03d8fd00dcCAS |

Frey NFD, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Häweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S (2012) Plasma membrane calcium ATPases are important components of receptor-mediated signalling in plant immune responses and development. Plant Physiology 159, 798–809.
Plasma membrane calcium ATPases are important components of receptor-mediated signalling in plant immune responses and development.Crossref | GoogleScholarGoogle Scholar |

Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiologia Plantarum 83, 529–533.
Control of phloem unloading by action potentials in Mimosa.Crossref | GoogleScholarGoogle Scholar |

Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. Journal of Experimental Botany 45, 463–469.
Action potentials in maize sieve tubes change phloem translocation.Crossref | GoogleScholarGoogle Scholar |

Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant, Cell & Environment 30, 249–257.
Electrical signals and their physiological significance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlemu74%3D&md5=0f339e0dc380598533a73d13f28df4ebCAS |

Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14–3-3 protein. The Plant Cell 19, 1617–1634.
Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14–3-3 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVWqtb4%3D&md5=64b21f40627cf32ac143476802c3b725CAS |

Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LG, Ramírez-Aguilar SJ, Gomez-Porras JL, González W, Thibaud JB, van Dongen JT, Dreyer I (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proceedings of the National Academy of Sciences of the United States of America 108, 864–869.
Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVWitA%3D%3D&md5=b2499377daa1a1cbd567f624fc470864CAS |

Gasperini D, Acosta IF, Kurenda A, Stolz S, Chételat A, Wolfender JL, Farmer EE (2015) Axial and radial oxylipin transport. Plant Physiology 169, 2244–2254.

Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J (2016) Systemic induction of NO-, redox-, and cGMP signaling in the pumpkin extrafascicular phloem upon local leaf wounding. Frontiers in Plant Science 7, 154

Gilroy S, Suzuki N, Mille G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science 19, 623–630.
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Wjs7vO&md5=1453bcaa831805248e15f6a6d67baeb5CAS |

Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry 283, 16400–16407.
Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslOjtrk%3D&md5=cc6f5bfd498f409362bdf9bc2a5ac16bCAS |

Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender JL, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. Journal of Biological Chemistry 284, 34506–34513.
Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWitLjF&md5=57a52fd5c12583436d137569bfd6a598CAS |

Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant, Cell & Environment 32, 319–326.
Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKjsrk%3D&md5=fe456415cf21baa5c86d64e05d382aa7CAS |

Guo JT, Zeng WZ, Chen QF, Lee CK, Chen LP, Yang Y, Cang CL, Ren DJ, Jiang YX (2016) Structure of voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 196–201.
Structure of voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVOjsLbP&md5=7b1750aa72ab4dd3e06477ee01b5d1a0CAS |

Hamann T (2015) The plant cell wall integrity maintenance mechanism – a case study of a cell wall plasma membrane signaling network. Phytochemistry 112, 100–109.
The plant cell wall integrity maintenance mechanism – a case study of a cell wall plasma membrane signaling network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGnsLjF&md5=d227759c66c65b288bd97598a639b8d4CAS |

Haruta M, Gray WM, Sussman MR (2015) Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Current Opinion in Plant Biology 28, 68–75.
Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFShsbrE&md5=719b131d9d241ae3384934c7dd63ee85CAS |

Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Molecular Plant 4, 428–441.
TPC1-SV channels gain shape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyjt7g%3D&md5=e473b5ceac467a7a8be8fc727889e230CAS |

Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends in Plant Science 21, 376–387.
Electrical wiring and long-distance plant communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1SitLk%3D&md5=3a059bb7760868eb9e58b765d6664187CAS |

Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends in Plant Science 14, 356–363.
Damaged-self recognition in plant herbivore defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVajsrY%3D&md5=c59510bfbed6f5b7182202690a81cfa0CAS |

Heil M (2012) Damaged-self recognition as a general strategy for injury detection. Plant Signaling & Behavior 7, 576–580.
Damaged-self recognition as a general strategy for injury detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKhtr%2FN&md5=b8f9af4fb4078a0697f3b3b875bd6058CAS |

Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends in Plant Science 13, 264–272.
Long-distance signalling in plant defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1artbw%3D&md5=8594b9aea810b9df109dbbe9f9721cceCAS |

Heinrich M, Baldwin IT, Wu JQ (2011) Two mitogenactivated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. Journal of Experimental Botany 62, 4355–4365.
Two mitogenactivated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeit7jM&md5=0b7926b099d92fbc95794057e03a4843CAS |

Hettenhausen C, Yang DH, Baldwin IT, Wu JQ (2013) Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis in Nicotiana attenuata. Plant Signaling & Behavior 8, e22784
Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis in Nicotiana attenuata.Crossref | GoogleScholarGoogle Scholar |

Hettenhausen C, Schuman MC, Wu JQ (2015) MAPK signaling: a key element in plant defense response to insects. Insect Science 22, 157–164.
MAPK signaling: a key element in plant defense response to insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlt1WlsLY%3D&md5=f54f731388c4d9b7b579a4ef4dac84c1CAS |

Hettenhausen C, Sun GL, He YB, Zhuang HF, Sun T, Qi JF, Wu JQ (2016) Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress. Scientific Reports 6, 18973
Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltFKqsw%3D%3D&md5=ea89297de21cb4a2518b490eb6155651CAS |

Higgins R, Lockwood T, Holley S, Yalamanchili R, Stratmann J (2007) Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato. Planta 225, 1535–1546.
Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlOhtLw%3D&md5=0fcb11b0ea54b569d2ba927dc805c170CAS |

Hilker M, Meiners T (2010) How do plants ‘notice’ attack by herbivorous arthropods? Biological Reviews of the Cambridge Philosophical Society 85, 267–280.
How do plants ‘notice’ attack by herbivorous arthropods?Crossref | GoogleScholarGoogle Scholar |

Hind SR, Malinowski R, Yalamanchili R, Stratmann JW (2010) Tissue-type specific systemin perception and the elusive systemin receptor. Plant Signaling & Behavior 5, 42–44.
Tissue-type specific systemin perception and the elusive systemin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVynsLw%3D&md5=b7e5b6167d6419876d5e1b10b0c78d07CAS |

Hossain MA, Ye W, Munemasa S, Nakamura Y, Mori IC, Murata Y (2014) Cyclic adenosine 5ʹ-diphosphoribose (cADPR) cyclic guanosine 3ʹ, 5ʹ-monophosphate positively function in Ca2+ elevation in methyl jasmonate-induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells. Plant Biology 16, 1140–1144.

Huda KMK, Banu MSA, Tuteja R, Tuteja N (2013) Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling. Journal of Experimental Botany 64, 3099–3109.
Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CktLrK&md5=8a7eba8dce00882fa12eb014542afff6CAS |

Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29, 300–311.
Polyamines: natural and engineered abiotic and biotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Wgt74%3D&md5=00cf683092119983f272b79e21d89166CAS |

Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y (2010) Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant & Cell Physiology 51, 1721–1730.
Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrnF&md5=cb1e579c1f6e61edf7ce15910ab8b4b2CAS |

Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, Yamada N, Iwai S (2013) Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. The Plant Cell 25, 558–571.
Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVOisr4%3D&md5=1546377952d3a9bbb7ea3a399283598aCAS |

Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura GI (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biology 10, 97
Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling.Crossref | GoogleScholarGoogle Scholar |

Kang S, Kim HB, Lee H, Choi JY, Heu S, Oh CJ, Kwon SI, An CS (2006) Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Molecules and Cells 21, 418–427.

Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y (2007) A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant & Cell Physiology 48, 332–344.
A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVCqsrY%3D&md5=6393aca7a458842ac7ccd1f71dda7ccbCAS |

Khalil HB, Wang Z, Wright JA, Ralevski A, Donayo AO, Gulick PJ (2011) Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1. Plant Molecular Biology 77, 145–158.
Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKjtrnN&md5=d7196f15713b2dc6eef410b8b3344f6aCAS |

Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist 207, 996–1004.
Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1yqsb7M&md5=347816387871c5c2ad5576f9c4400ef7CAS |

Kintzer AF, Stroud RM (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 258–264.
Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVChuro%3D&md5=af019df1033380c38f91dfb587344859CAS |

Klauser D, Desurmont GA, Glauser G, Vallat A, Flury P, Boller T, Turlings TCJ, Bartels S (2015) The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. Journal of Experimental Botany 66, 5327–5336.
The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWhsbzJ&md5=71cc32a9ad76e445bfe519def5d1b9b3CAS |

Kohorn BD (2015) The state of cell wall pectin monitored by wall associated kinases: a model. Plant Signaling & Behavior 10, e1035854

Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KAS, Becker D, Hedrich R (2010) Perception of the Arabidopsis danger signal peptide1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry 285, 13471–13479.
Perception of the Arabidopsis danger signal peptide1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFOgs7o%3D&md5=4b618b56053a76636ac15c797e6d1dcfCAS |

Kunkel JG, Cordeiro S, Xu Y, Shipley AM, Feijó JA (2006) The use of non-invasive ion-selective microelectrode techniques for the study of plant development. In ‘Plant electrophysiology – theory and methods’. (Ed. AG Volkov) pp. 109–137. (Springer-Verlag: Berlin)

Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends in Plant Science 18, 227–233.
Plant mechanosensing and Ca2+ transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFShug%3D%3D&md5=b0b3b59aab2b2bbe12096effb42c3f96CAS |

Kwaaitaal M, Huisman R, Maintz J, Reinstädler A, Panstruga R (2011) Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. The Biochemical Journal 440, 355–373.
Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqs7zJ&md5=7b633a37905a048d175841f6f31389b7CAS |

Lanfermeijer FC, Staal M, Malinowski R, Stratmann JW, Elzenga JT (2008) Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin. Plant Physiology 146, 129–139.
Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCmsL8%3D&md5=5804a743e6a7f8706e4ed93c3ad47413CAS |

Lautner S, Stummer M, Matyssek R, Fromm J, Grams TEE (2014) Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation. Plant, Cell & Environment 37, 254–260.
Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyjurnI&md5=216bc73087c2c3a9c0bd277c6527a579CAS |

Lebrun-Garcia A, Chiltz A, Gout E, Bligny R, Pugin A (2002) Questioning the role of salicylic acid and cytosolic acidification in mitogen-activated protein kinase activation induced by cryptogein in tobacco cells. Planta 214, 792–797.
Questioning the role of salicylic acid and cytosolic acidification in mitogen-activated protein kinase activation induced by cryptogein in tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1yqsLc%3D&md5=be5aaa9ab7fd633eda1abd0ed96f4283CAS |

Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytologist 171, 249–269.
Calcium in plant defence-signalling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFejs74%3D&md5=ebf10b686ab94ba4d483748935e783abCAS |

Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS (2008) Regulation of MAP kinase phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. Journal of Biological Chemistry 283, 23581–23588.
Regulation of MAP kinase phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWktr7N&md5=8a14a03042d7680094eb02ee7fa4af7eCAS |

Lemtiri-Chlieh F, Berckowitz GA (2004) Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. Journal of Biological Chemistry 279, 35306–35312.
Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2iurY%3D&md5=b8e7d1e17a3d82049d3e97496fcbfb16CAS |

Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of the National Academy of Sciences of the United States of America 99, 6416–6421.
Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWnt7Y%3D&md5=3fdbc340c98429547e509d1949eff349CAS |

Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL (2009) A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiology 150, 114–124.
A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFahsr0%3D&md5=b5beafdca0b625965df9752cfbb87b38CAS |

Li T, Cofer T, Engelberth M, Engelberth J (2016) Defense priming and jasmonates: a role for free fatty acids in insect elicitor-induced long distance signaling. Plants 5, 5
Defense priming and jasmonates: a role for free fatty acids in insect elicitor-induced long distance signaling.Crossref | GoogleScholarGoogle Scholar |

Lori M, van Verk MC, Hander T, Schatowitz H, Klauser D, Flury P, Gehring CA, Boller T, Bartels M (2015) Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling. Journal of Experimental Botany 66, 5315–5325.
Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWhsbzI&md5=5251d9eab7989c1864f14882dc34879fCAS |

Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q (2016) AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. Journal of Experimental Botany 67, 809–819.
AtCNGC2 is involved in jasmonic acid-induced calcium mobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlWiu7zI&md5=84b81258ba45b5baa760373c709fc368CAS |

Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiology 148, 818–828.
Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLrE&md5=428a3e24d4aeb1a8b7b3cc69e3eedca9CAS |

Ma Y, Walker RK, Zhao YC, Berkowitz GA (2012) Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proceedings of the National Academy of Sciences of the United States of America 109, 19852–19857.
Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChurfI&md5=373ec5d969481a0c7ad919649b6b4de4CAS |

Ma Y, Zhao YC, Walker RK, Berkowitz GA (2013) Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiology 163, 1459–1471.
Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2nurfP&md5=e71fe910bb2c4e53a6450dcd78afe111CAS |

Maffei M, Bossi S (2006) Electrophysiology and plant responses to biotic stress. In ‘Plant electrophysiology – theory and methods’. (Ed. AG Volkov) pp. 461–481. (Springer-Verlag: Berlin)

Maffei ME, Bossi S, Spiteller D, Mithofer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiology 134, 1752–1762.
Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmtr8%3D&md5=df3c9e0bc26ee8aa864118c6abc9b711CAS |

Maffei ME, Mithöfer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, Cucuzza LS, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiology 140, 1022–1035.
Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xislygsrc%3D&md5=2980d5e4c21890538e76491a2eac67e6CAS |

Maffei ME, Arimura GI, Mithoefer A (2012) Natural elicitors, effectors and modulators of plant responses. Natural Product Reports 29, 1288–1303.
Natural elicitors, effectors and modulators of plant responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyhs7fP&md5=8484834a366eb6b2b0bbf62bd431f570CAS |

Maischak H, Grigoriev PA, Vogel H, Boland W, Mithöfer A (2007) Oral secretions from herbivorous lepidopteran larvae exhibit ion channel-forming activities. FEBS Letters 581, 898–904.
Oral secretions from herbivorous lepidopteran larvae exhibit ion channel-forming activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12hsLs%3D&md5=310e5654f7560614c4e4432b5eed4a94CAS |

Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localised K+ channel is blocked by protons. Proceedings of the National Academy of Sciences of the United States of America 96, 7581–7586.
AKT3, a phloem-localised K+ channel is blocked by protons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVOqsbg%3D&md5=1df5a0d0072e03066f50e2b18f290a27CAS |

Martinis J, Gas-Pascual E, Szydlowski N, Crèvecoeur M, Gisler A, Bürkle L, Fitzpatrick TB (2016) Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines. Plant Physiology 171, 542–553.
Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsV2nsbfM&md5=3380102ff8cbcedc429661a8337c5e25CAS |

Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology 9, 274–280.
Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVGgtbk%3D&md5=c4e0c23c2e6e83f3ecbdfc4937a00d2eCAS |

Matsui K, Koeduka T (2016) Green leaf volatiles in plant signaling and response. Sub-Cellular Biochemistry 86, 427–443.
Green leaf volatiles in plant signaling and response.Crossref | GoogleScholarGoogle Scholar |

Meindl T, Boller T, Felix G (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. The Plant Cell 10, 1561–1570.
The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVKiu7k%3D&md5=4d4963da9d799d72d8859ac56ce6a4d5CAS |

Meyerhoff O, Muller K, Roelfsema MRG, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222, 418–427.
AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWmt7jF&md5=1520e47e39757f831d261d424f6b7472CAS |

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling 2, ra45
The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.Crossref | GoogleScholarGoogle Scholar |

Mirabella R, Rauwerda H, Struys EA, Jakobs C, Triantaphylidés C, Haring MA, Schuurink RC (2008) The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. The Plant Journal 53, 197–213.
The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFehtrk%3D&md5=c144ea74380646d88a699d317325f5beCAS |

Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou EA, de Vries M, Boersma MR, Breit TM, Haring MA, Schuurink RC (2015) WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. The Plant Journal 83, 1082–1096.
WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVGis7bF&md5=fa125872737daccfaf72b9f629b25372CAS |

Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. The Plant Journal 51, 656–669.
Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSmtrvK&md5=1ee71ee1d7725b14ec5f714efcbc1683CAS |

Mithöfer A, Ebel J, Felle HH (2005) Cation fluxes cause plasma membrane depolarization involved in β-glucan elicitor-signaling in soybean roots. Molecular Plant-Microbe Interactions 18, 983–990.
Cation fluxes cause plasma membrane depolarization involved in β-glucan elicitor-signaling in soybean roots.Crossref | GoogleScholarGoogle Scholar |

Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell 27, 64–70.
The roles of ROS and ABA in systemic acquired acclimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Wmtrw%3D&md5=4d7e5ae42738428fb828c3c9e4dfb9ebCAS |

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends in Plant Science 16, 300–309.
ROS signaling: the new wave?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrs7w%3D&md5=0c657a7cae7167e4ba7437c790ad8a08CAS |

Moeder W, Urquhart W, Ung H, Yoshioka K (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Molecular Plant 4, 442–452.
The role of cyclic nucleotide-gated ion channels in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyjtb4%3D&md5=e4224e4b52068642d3feb3bcc2ddcdfaCAS |

Mohanta TK, Occhipinti A, Zebelo AS, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM (2012) Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS One 7, e32822
Ginkgo biloba responds to herbivory by activating early signaling and direct defenses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVeqsrw%3D&md5=dac6d7cb44b054ae8481cbf961c96379CAS |

Monshausen GB (2009) Feeling green: mechanosensing in plants. Trends in Cell Biology 19, 228–235.
Feeling green: mechanosensing in plants.Crossref | GoogleScholarGoogle Scholar |

Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. Journal of Experimental Botany 64, 4663–4680.
A force of nature: molecular mechanisms of mechanoperception in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrsbnN&md5=2a1e2c9490c64f10c61501fce67cb232CAS |

Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiology 135, 702–708.
Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlKjur8%3D&md5=544aec71b5bf128f7e1f2ec36ece1521CAS |

Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. The Plant Journal 65, 949–957.
Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVaisLg%3D&md5=bdfbf3ff6b87aab1ac5af820e3bea402CAS |

Moscatiello R, Mariani P, Sanders D, Maathuis FJM (2006) Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. Journal of Experimental Botany 57, 2847–2865.
Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2mtb0%3D&md5=9be3f80f8f92ab599a7aff5bf545c923CAS |

Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf signaling. Nature 500, 422–426.
GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWjtrbJ&md5=ac068796f33d29f0226c8dcd96dd3f16CAS |

Moyen C, Johannes E (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant, Cell & Environment 19, 464–470.
Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFWgt7c%3D&md5=33d21cfea222992a9424550020b28aedCAS |

Moyen C, Hammond-Kosack KE, Jones J, Knight MR, Johannes E (1998) Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant, Cell & Environment 21, 1101–1111.
Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFOgtg%3D%3D&md5=e8531e5b370ecd6a4707a70f2f0e2cefCAS |

Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiology 143, 1398–1407.
The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyqtr4%3D&md5=42dc7b241cabde60a6e4d0a0a719bdacCAS |

Munemasa S, Mori IC, Murata Y (2011) Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signaling & Behavior 6, 939–941.
Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSmurg%3D&md5=d9b574a76fb7327a9c9d3e98b437e79fCAS |

Navazio L, Moscatiello R, Bellincampi D, Baldan B, Meggio F, Brini M, Bowler C, Mariani P (2002) The role of calcium in oligogalacturonide-activated signalling in soybean cells. Planta 215, 596–605.
The role of calcium in oligogalacturonide-activated signalling in soybean cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVKhtbs%3D&md5=9a2843c2769c55faef0a1bf1b905401cCAS |

Nemchinov LG, Shabala L, Shabala S (2008) Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Plant & Cell Physiology 49, 40–46.
Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVSgtLg%3D&md5=50bbcac53be55b07c03f5322a2e30386CAS |

Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 4, 139
MAMP (microbe-associated molecular pattern) triggered immunity in plants.Crossref | GoogleScholarGoogle Scholar |

Nieves-Cordones M, Al Shiblawi FR, Sentenac H (2016) Roles and transport of sodium and potassium in plants. Metal Ions in Life Sciences 16, 291–324.
Roles and transport of sodium and potassium in plants.Crossref | GoogleScholarGoogle Scholar |

Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Frontiers in Plant Science 4, 230

Offner FF (1991) Ion flow through membranes and the resting potential of cells. Journal of Membrane Biology 123, 171–182.
Ion flow through membranes and the resting potential of cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVSgtbc%3D&md5=50213eb023fd2b797adb7efb6693338cCAS |

Okamoto H, Göbel C, Capper RG, Saunders N, Feussner I, Knight MR (2009) The α-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana. Journal of Experimental Botany 60, 1991–2003.
The α-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSjtL8%3D&md5=cc9eaa38d2f73267d671bd4590f5c97bCAS |

Ozawa R, Bertea CM, Foti M, Narayana R, Arimura GI, Muroi A, Horiuchi JI, Nishioka T, Maffei ME, Takabayashi J (2009) Exogenous polyamines elicit herbivore-induced volatiles in Lima bean leaves: involvement of calcium, H2O2 and jasmonic acid. Plant & Cell Physiology 50, 2183–2199.
Exogenous polyamines elicit herbivore-induced volatiles in Lima bean leaves: involvement of calcium, H2O2 and jasmonic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyktLvL&md5=36bde9beceb741a6b17e561ba1a16f1cCAS |

Ozawa R, Bertea CM, Foti M, Narayana R, Arimura GI, Muroi A, Horiuchi JI, Nishioka T, Maffei ME, Takabayashi J (2010) Polyamines and jasmonic acid induce plasma membrane potential variations in lima bean. Plant Signaling & Behavior 5, 308–310.
Polyamines and jasmonic acid induce plasma membrane potential variations in lima bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1eku7k%3D&md5=5f2a35e6912331ec2d27c6caff09083fCAS |

Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annual Review of Plant Biology 52, 817–845.
Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWgtrs%3D&md5=30cc1b97525e8e72a470f7579c404a8fCAS |

Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes. Science 253, 895–897.
A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1ygu78%3D&md5=e158e9977787afdd1a12e4f44bef342fCAS |

Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734.
Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1CgtLY%3D&md5=8a1f28a429b88cedb236d3ff0d553a4cCAS |

Peiter E (2011) The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 50, 120–128.
The plant vacuole: emitter and receiver of calcium signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaisLvP&md5=2326f9e9b939cdefa05e1cfca493f4b0CAS |

Perochon A, Aldon D, Galaud JP, Ranty B (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93, 2048–2053.
Calmodulin and calmodulin-like proteins in plant calcium signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjsrvN&md5=91f7e63f3bb6520f6de7ea8ae03575c6CAS |

Planes MD, Niñoles R, Rubio L, Bissoli G, Bueso E, García-Sánchez MJ, Alejandro S, Gonzalez-Guzmán M, Hedrich R, Rodriguez PL, Fernández JA, Serrano R (2015) A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. Journal of Experimental Botany 66, 813–825.
A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWhsb3M&md5=6c1f5c258c9a533b5de9512311a77755CAS |

Pottosin I, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Letters 583, 921–926.
SV channels dominate the vacuolar Ca2+ release during intracellular signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aqtbs%3D&md5=64f892095189cf5940868f371d8266f5CAS |

Pottosin I, Velarde-Buendía AM, Bose J, Fuglsang AT, Shabala S (2014a) Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots. Journal of Experimental Botany 65, 2463–2472.
Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosFCgurc%3D&md5=874d1bf3281fe36b61562315e64a4bb8CAS |

Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014b) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. Journal of Experimental Botany 65, 1271–1283.
Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htbw%3D&md5=72037fa2f76425658d7df07c605767c3CAS |

Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America 107, 21193–21198.
Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyls7fP&md5=c079461af7f0f6f286def232f6fb92b3CAS |

Qiu Y, Xi J, Du L, Suttle JC, Poovaiah B (2012) Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Molecular Biology 79, 89–99.
Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWmtL4%3D&md5=72a8233146c951c2167be4c132d4c1aaCAS |

Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science 7, 327
Calcium sensors as key hubs in plant responses to biotic and abiotic stresses.Crossref | GoogleScholarGoogle Scholar |

Rea G, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiology 128, 865–875.
Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1GqtrY%3D&md5=f8dc835fc1c61e7aa2e336dc3a90049cCAS |

Romeis T, Herde M (2014) From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology 20, 1–10.
From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2nt7rL&md5=bbce4d38b54545f76fc873fcb8f8d592CAS |

Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42, 857–865.
Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2jsrw%3D&md5=71468edd969fd48dc950e14a2f6f3090CAS |

Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiology 129, 156–168.
LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFSnu7g%3D&md5=94639dd7dd070b60e454bd2271d973c1CAS |

Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H (2015) The jasmonate-responsive GTR1 transporter is required for gibberellins-mediated stamen development in Arabidopsis. Nature Communications 6, 6095
The jasmonate-responsive GTR1 transporter is required for gibberellins-mediated stamen development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Salvador-Recatalà V (2016) New roles for the GLUTAMATE RECEPTOR-LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound-induced systemic electrical signals. Plant Signaling & Behavior 11, e1161879
New roles for the GLUTAMATE RECEPTOR-LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound-induced systemic electrical signals.Crossref | GoogleScholarGoogle Scholar |

Salvador-Recatalà V, Tjallingii WF, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytologist 203, 674–684.
Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes.Crossref | GoogleScholarGoogle Scholar |

Sato C, Aikawa K, Sugiyama S, Nabeta K, Masuta C, Matsuura H (2011) Distal transport of exogenously applied jasmonoyl-isoleucine with wounding stress. Plant & Cell Physiology 52, 509–517.
Distal transport of exogenously applied jasmonoyl-isoleucine with wounding stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVOnsLs%3D&md5=7b0fa697cb17e64191a70a56c1e32728CAS |

Savatin DV, Gramegna G, Modesti V, Cervone F (2014) Wounding in the plant tissue: the defense of a dangerous passage. Frontiers in Plant Science 5, 470
Wounding in the plant tissue: the defense of a dangerous passage.Crossref | GoogleScholarGoogle Scholar |

Scala A, Allmann S, Mirabella R, Haring M, Schuurink R (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences 14, 17781–17811.
Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1amsA%3D%3D&md5=8cdc953cc15b8ddf2524b177caad4e0dCAS |

Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. The Plant Cell 11, 263–272.

Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PE (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proceedings of the National Academy of Sciences of the United States of America 106, 653–657.
Phytohormone-based activity mapping of insect herbivore-produced elicitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbw%3D&md5=44c045203009de24509afe2942e2fe4fCAS |

Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender KW, Snedden WA, Boland W, Mithöfer A (2014) Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Molecular Plant 7, 1712–1726.
Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFakurg%3D&md5=3c3af75a06bfb6868dedbf1891846cb2CAS |

Scholz SS, Reichelt M, Mekonnen DW, Ludewig F, Mithöfer A (2015) Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Frontiers in Plant Science 6, 1128
Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response.Crossref | GoogleScholarGoogle Scholar |

Schönknecht G (2013) Calcium signals from the vacuole. Plants 2, 589–614.
Calcium signals from the vacuole.Crossref | GoogleScholarGoogle Scholar |

Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiology 163, 523–530.
Calcium-dependent protein kinases: hubs in plant stress signaling and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ojs7bO&md5=002a07bfdef3fa307133d18fcd10174fCAS |

Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. The Plant Journal 68, 424–432.
Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCksrbO&md5=a7c9d7c59ca3ae3cdda6bcc4b8a334e6CAS |

Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences of the United States of America 98, 4788–4793.
Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVantb0%3D&md5=76768c880543e858f2b32fc36690da11CAS |

Shabala S, Baekgaard L, Shabala L, Fuglsang AT, Babourina O, Palmgren MG, Cuin TA, Rengel Z, Nemchinov LG (2011a) Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant, Cell & Environment 34, 406–417.
Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOgsbo%3D&md5=6bb1d543ac74f14f5f1597bcd77b0b3aCAS |

Shabala S, Bækgaard L, Shabala L, Fuglsang AT, Cuin TA, Nemchinov LG, Palmgren MG (2011b) Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling & Behavior 6, 1053–1056.
Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSlsb8%3D&md5=49f1e584c0a5c3ddde40bffadeca04ffCAS |

Sherstneva O, Vodeneev V, Katicheva L, Surova L, Sukhov V (2015) Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings. Biochemistry (Moscow) 80, 776–784.
Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVahsrbM&md5=b135294934a370b6cdd5593ab1a82afeCAS |

Singh A, Bhatnagar N, Pandey A, Pandey GK (2015) Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58, 139–146.
Plant phospholipase C family: regulation and functional role in lipid signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnt1SktL8%3D&md5=589928e56d5368c2edaed57fcc2cb8b1CAS |

Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiology 136, 2475–2482.
Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOrtbY%3D&md5=5e542ebb3d3fbec50bc48f0bf5935142CAS |

Staal M, De Cnodder T, Simon D, Vandenbussche F, Van der Straeten D, Verbelen JP, Elzenga T, Vissenberg K (2011) Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Plant Physiology 155, 2049–2055.
Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOrtb8%3D&md5=47a273f20539e7ebf264ce12531cacafCAS |

Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In ‘Communication in plants’. (Eds F Baluska, S Mancuso, D Volkmann) pp. 291–308. (Springer: Berlin)

Stanković B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Letters 390, 275–279.
Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato.Crossref | GoogleScholarGoogle Scholar |

Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiology 134, 1536–1545.
Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmsLw%3D&md5=f5dfb1249ddbc892729d10e6f8401b0aCAS |

Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynthesis Research 130, 373–387.
Electrical signals as mechanism of photosynthesis regulation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsV2it7g%3D&md5=0d71c50732cbe1405a5ecede64987c3aCAS |

Sukhov V, Nerush V, Orlova L, Vodeneev V (2011) Simulation of action potential propagation in plants. Journal of Theoretical Biology 291, 47–55.
Simulation of action potential propagation in plants.Crossref | GoogleScholarGoogle Scholar |

Sukhov V, Akinchits E, Katicheva L, Vodeneev V (2013) Simulation of variation potential in higher plant cells. Journal of Membrane Biology 246, 287–296.
Simulation of variation potential in higher plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGrsrc%3D&md5=ffa7c1e18f79d0bd9f6062b7f84c428aCAS |

Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V (2014) Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant, Cell & Environment 37, 2532–2541.
Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOksrfN&md5=60e8902f2aa6668a5191a4a4ff347b00CAS |

Sun QP, Guo Y, Sun Y, Sun DY, Wang XJ (2006) Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana. Journal of Plant Research 119, 343–350.
Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1agtL8%3D&md5=f148d123deb04e7b513c31251d8877caCAS |

Sun QP, Yu YQ, Wan SX, Zhao FK, Hao YL (2009) Is there crosstalk between extracellular and intracellular calcium mobilization in jasmonic acid signaling. Plant Growth Regulation 57, 7–13.
Is there crosstalk between extracellular and intracellular calcium mobilization in jasmonic acid signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2qu7nO&md5=f3677496f11a525ee8a47f53ccbec9c9CAS |

Surova L, Sherstneva O, Vodeneev V, Katicheva L, Semina M, Sukhov V (2016) Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves. Journal of Plant Physiology 202, 57–64.
Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFyhtLrE&md5=dde8afd51383edead6e1f29a74a70a6aCAS |

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology 14, 691–699.
Respiratory burst oxidases: the engines of ROS signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygu7vJ&md5=40e0fbdb14c57a6bb672bcdf028e1549CAS |

Suzuki N, Miller G, Salazar C, Mondal H, Shulaev E, Cortes DF, Shuman JL, Luo XZ, Shah J, Schlauch K, Shulaev V, Mittler R (2013) Temporal-spatial interaction between ROS and ABA controls rapid systemic acclimation in plants. The Plant Cell 25, 3553–3569.
Temporal-spatial interaction between ROS and ABA controls rapid systemic acclimation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOktrfI&md5=7486e9d66ba2bae952c35e91ed5a8d30CAS |

Sveinsdóttir H, Yan F, Zhu Y, Peiter-Volk T, Schubert S (2009) Seed ageing-induced inhibition of germination and post-germination root growth is related to lower activity of plasma membrane H+-ATPase in maize roots. Journal of Plant Biology 166, 128–135.

Swarbreck SM, Colaco R, Davies JM (2013) Plant calcium-permeable channels. Plant Physiology 163, 514–522.
Plant calcium-permeable channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ojs7bM&md5=d3a617374c3b00f24f576ba42ad87fa7CAS |

Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. The Plant Journal 36, 820–829.
Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlyqtg%3D%3D&md5=d7dc91bc3b0a24bc7e69aabb85caa677CAS |

Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. The Plant Journal 40, 586–595.
A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyit7jO&md5=8396962d58b4b07cda5a27ac25e87243CAS |

Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Molecular Cell 41, 649–660.
Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsV2jsrY%3D&md5=02d76567a89b3e6b70b983338c1b641eCAS |

Tanaka K, Choi J, Cao Y, Stacey G (2014) Extracellular ATP as a damage-associated molecular pattern (DAMP) in plants. Frontiers in Plant Science 5, 446
Extracellular ATP as a damage-associated molecular pattern (DAMP) in plants.Crossref | GoogleScholarGoogle Scholar |

Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: a new insight with new techniques. Journal of Experimental Botany 48, 609–622.
Ion channel activity during the action potential in Chara: a new insight with new techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1eqtbs%3D&md5=49df27adc81576097ae09e2790ca421bCAS |

Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240, 1–18.
The roles of polyamines during the lifespan of plants: from development to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslemsbc%3D&md5=1aef7e91eff92c24ecdb0ff6ec5a8ab2CAS |

Truitt CL, Wei HX, Pare PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. The Plant Cell 16, 523–532.
A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFKisL0%3D&md5=95e12b03ca26d9d67f997e8342907023CAS |

Trusov Y, Botella JR (2012) New faces in plant innate immunity: heterotrimeric G proteins. Journal of Plant Biochemistry and Biotechnology 21, 40–47.
New faces in plant innate immunity: heterotrimeric G proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVShsLnK&md5=63ab4286330d4e6ad8fd1356c392625aCAS |

Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiology 140, 210–220.
Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgsbY%3D&md5=d21d7780c62607d80f3a21e0b1fd5831CAS |

Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant & Cell Physiology 47, 346–354.
Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVCltLg%3D&md5=0c6d92a5934609a8abbb7ec28dc401b7CAS |

ul Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnology Journal 13, 727–739.
Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFGmu7jI&md5=aeac1fb478671fee57eb0f142878e624CAS |

Urano D, Jones AM (2014) Heterotrimeric G protein-coupled signaling in plants. Annual Review of Plant Biology 65, 365–384.
Heterotrimeric G protein-coupled signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhtrvJ&md5=809b9bf2125d20e6f57709730c9f109eCAS |

Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A (2012a) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiology 159, 1159–1175.
CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGlsbjE&md5=f8e0a5cc7db8adeaeaced5d4aaad1e3dCAS |

Vadassery J, Scholz SS, Mithöfer A (2012b) Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signaling & Behavior 7, 1277–1280.
Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlCmsro%3D&md5=913fb402647a130cf9f4017ab8f694b0CAS |

Vadassery J, Reichelt M, Jimenez-Aleman GH, Boland W, Mithöfer A (2014) Neomycin inhibition of (+)-7-iso-lasmonoyl-L-isoleucine accumulation and signaling. Journal of Chemical Ecology 40, 676–686.
Neomycin inhibition of (+)-7-iso-lasmonoyl-L-isoleucine accumulation and signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1Gisrs%3D&md5=27b6d916c4e1289265d27d60e9477c79CAS |

van Bel AJ, Knoblauch M, Furch AC, Hafke JB (2011) (Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Science 181, 210–218.
(Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovF2ms78%3D&md5=88527a593a3d5bc2f1d9e26961879b36CAS |

van Bel AJ, Furch AC, Will T, Buxa SV, Musetti R, Hafke JB (2014) Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway. Journal of Experimental Botany 65, 1761–1787.
Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOltbg%3D&md5=669cf7999e13b63b599896644d4fa9f0CAS |

VanDoorn A, Kallenbach M, Borquez AA, Baldwin IT, Bonaventure G (2010) Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves. BMC Plant Biology 10, 164
Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves.Crossref | GoogleScholarGoogle Scholar |

Vatsa P, Chiltz A, Bourque S, Wendehenne D, Garcia-Brugger A, Pugin A (2011) Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie 93, 2095–2101.
Involvement of putative glutamate receptors in plant defence signaling and NO production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjsrjJ&md5=25e1574f3cedd60650cd49aaca40b624CAS |

Verrillo F, Occhipinti A, Kanchiswamy CN, Maffei ME (2014) Quantitative analysis of herbivore-induced cytosolic calcium by using a Cameleon (YC 3.6) calcium sensor in Arabidopsis thaliana. Journal of Plant Physiology 171, 136–139.
Quantitative analysis of herbivore-induced cytosolic calcium by using a Cameleon (YC 3.6) calcium sensor in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOmurvP&md5=ec3158f3049564d8a66076274a579e86CAS |

Vincill ED, Clarin AE, Molenda JN, Spalding EP (2013) Interacting receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis. The Plant Cell 25, 1304–1313.
Interacting receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVaqu78%3D&md5=4721b04525bc4ef6f1a6b619f18f9e91CAS |

Vodeneev V, Akinchits E, Sukhov V (2015) Variation potential in higher plants: mechanisms of generation and propagation. Plant Signaling & Behavior 10, e1057365
Variation potential in higher plants: mechanisms of generation and propagation.Crossref | GoogleScholarGoogle Scholar |

Walter A, Mazars C, Maitrejean M, Hopke J, Ranjeva R, Boland W, Mithöfer A (2007) Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angewandte Chemie International Edition 46, 4783–4785.
Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOksrY%3D&md5=30a8e1f539e0d95d7e353787c24b94f8CAS |

Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. Journal of Experimental Botany 53, 747–756.
Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlCksLw%3D&md5=6187ab269f45f3e5b9a19f72a96875e6CAS |

Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annual Review of Plant Biology 64, 451–476.
Potassium transport and signaling in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFSktb0%3D&md5=75ac70147b4c200b7b7660b1ca4d45f7CAS |

Ward J, Pei ZM, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. The Plant Cell 7, 833–844.
Roles of ion channels in initiation of signal transduction in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1SgsbY%3D&md5=5ba4152a5914d8f8e47d47d246d1938fCAS |

Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111, 1021–1058.
Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWjs7c%3D&md5=6a0c698c2339e207d59fdb5826c03563CAS |

Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase-inhibitor induction in the wounded plant. Nature 360, 62–65.
Electrical signaling and systemic proteinase-inhibitor induction in the wounded plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFeitQ%3D%3D&md5=d5cae805fae6777027e6239d6ade2b26CAS |

Will T, van Bel AJE (2008) Induction as well as suppression. Plant Signaling & Behavior 3, 427–430.
Induction as well as suppression.Crossref | GoogleScholarGoogle Scholar |

Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science 181, 593–603.
Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaru7bI&md5=203fcfa191274f5f091c5b37adc19374CAS |

Wu JQ, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44, 1–24.
New insights into plant responses to the attack from insect herbivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SmurjJ&md5=974474c4c822d1372a174c44bf264dd2CAS |

Wu JQ, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. The Plant Cell 19, 1096–1122.
Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltF2jsr4%3D&md5=c28b452e7f71040e2aa2c401e01f258fCAS |

Wünsche H, Baldwin IT, Wu J (2011a) Silencing NOA1 elevates herbivory-induced jasmonic acid accumulation and compromises most of the carbon-based defense metabolites in Nicotiana attenuata. Journal of Integrative Plant Biology 53, 619–631.
Silencing NOA1 elevates herbivory-induced jasmonic acid accumulation and compromises most of the carbon-based defense metabolites in Nicotiana attenuata.Crossref | GoogleScholarGoogle Scholar |

Wünsche H, Baldwin IT, Wu J (2011b) S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. Journal of Experimental Botany 62, 4605–4616.
S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata.Crossref | GoogleScholarGoogle Scholar |

Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094.
COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1egsbk%3D&md5=e7a84061f014ba7dca4b9c186601d51dCAS |

Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. The Plant Cell 8, 555–564.

Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. The Plant Cell 14, 1919–1935.
The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslCgsr0%3D&md5=4307e727d66ae94bf581da6c045ed1a1CAS |

Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H (2004) Plant MAPK Phosphatase Interacts with Calmodulins. Journal of Biological Chemistry 279, 928–936.
Plant MAPK Phosphatase Interacts with Calmodulins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtV2gug%3D%3D&md5=a927137a031a1c200f23c09341d506beCAS |

Yan SL, Luo ST, Dong SS, Zhang T, Sun JR, Wang NN, Yao HJ, Shen YB (2015a) Heterotrimeric G-proteins involved in the MeJA regulated ion flux and stomatal closure in Arabidopsis thaliana. Functional Plant Biology 42, 126–135.
Heterotrimeric G-proteins involved in the MeJA regulated ion flux and stomatal closure in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFCitw%3D%3D&md5=17376799642b2f8182ad5dfa485684d1CAS |

Yan SL, McLamore ES, Dong SS, Gao HB, Taguchi M, Wang NN, Zhang T, Su XH, Shen YB (2015b) The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. The Plant Journal 83, 638–649.
The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFGrsr%2FJ&md5=614d4241a3bef3775d9238691cea8cbdCAS |

Yan SL, Zhang T, Dong SS, McLamore ES, Wang NN, Shan XY, Shen YB, Wan YL (2016) MeJA affects root growth by modulation of transmembrane auxin flux in the transition zone. Journal of Plant Growth Regulation 35, 256–265.
MeJA affects root growth by modulation of transmembrane auxin flux in the transition zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtFCiu7Y%3D&md5=ba329a56e82f549d08653e26224fe035CAS |

Yang DH, Hettenhausen C, Baldwin IT, Wu J (2011) The multifaceted function of BAK1/SERK3: plant immunity to pathogens and responses to insect herbivores. Plant Signaling & Behavior 6, 1322–1324.
The multifaceted function of BAK1/SERK3: plant immunity to pathogens and responses to insect herbivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOgsr8%3D&md5=688367021d8ba33aa74999e288c1c06cCAS |

Yang DH, Hettenhausen C, Baldwin IT, Wu J (2012) Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound- and herbivory-induced jasmonic acid accumulations. Plant Physiology 159, 1591–1607.
Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound- and herbivory-induced jasmonic acid accumulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1CgsL7N&md5=8524837fee6899129b113dfe582e11f2CAS |

Yoshinaga N, Alborn HT, Nakanishi T, Suckling DM, Nishida R, Tumlinson JH, Mori N (2010) Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. Journal of Chemical Ecology 36, 319–325.
Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFKiurg%3D&md5=a5780c21dbfbfb40e5017d2ce42ae708CAS |

Yoshinaga N, Ishikawa C, Seidl-Adams I, Bosak E, Aboshi T, Tumlinson JH, Mori N (2014) N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. Journal of Chemical Ecology 40, 484–490.
N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslGku7s%3D&md5=f428b3bdac0750724c6f98af41d30230CAS |

Yue RQ, Lu C, Sun T, Peng TT, Han XH, Qi JS, Yan SF, Tie SG (2016) Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Frontiers in Plant Science 6, 576

Zebelo SA, Maffei ME (2015) Role of early signaling events in plant-insect interactions. Journal of Experimental Botany 66, 435–448.
Role of early signaling events in plant-insect interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGjsr3F&md5=fa96a27773779eacc41f44790556d13fCAS |

Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicum) plant-to-plant communication. Plant Science 196, 93–100.
Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicum) plant-to-plant communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVamtbbE&md5=19510206018dbf7ad9aaaef7f11468dcCAS |

Zhang W, He SY, Assmann SM (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. The Plant Journal 56, 984–996.
The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsV2lsA%3D%3D&md5=e293c596cf4d293d54982e4df04014eeCAS |

Zhao J (2015) Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. Journal of Experimental Botany 66, 1721–1736.
Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGjs7zL&md5=2e164d7cbc0b41a481b0629678c4dcdcCAS |

Zhao J, Wang X (2004) Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. Journal of Biological Chemistry 279, 1794–1800.
Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2msw%3D%3D&md5=a9d3e9511d48af0ba844407161744310CAS |

Zhu XH, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kumar SP (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO Journal 29, 1007–1018.
Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFCqsg%3D%3D&md5=480a47bb05849650c5e898ada63ff3e5CAS |

Zhu CH, Yang N, Ma XL, Li GJ, Qian M, Ng D, Xia K, Gan LJ (2015) Plasma membrane H+-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Reports 34, 1025–1036.
Plasma membrane H+-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVCqtrk%3D&md5=f6b5ce9b9153ea9aca5683b5a705b7c1CAS |

Zimmermann MR, Maischak H, Mithöer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiology 149, 1593–1600.
System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCiu70%3D&md5=23666e6a30345c628d63e379ec820f7fCAS |

Zimmermann MR, Mithöfer A, Will T, Felle HH, Furch AC (2016) Herbivore-triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification. Plant Physiology 170, 2407–2419.
Herbivore-triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCjurfP&md5=4d905c3c2e31add330a09bbe7d439d2aCAS |