Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Potassium fluxes and reactive oxygen species production as potential indicators of salt tolerance in Cucumis sativus

Mirvat Redwan A , Francesco Spinelli A , Lucia Marti A , Matthias Weiland A , Emily Palm A , Elisa Azzarello A and Stefano Mancuso A B
+ Author Affiliations
- Author Affiliations

A Department of Plant, Soil and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.

B Corresponding author. Email: stefano.mancuso@unifi.it

Functional Plant Biology 43(11) 1016-1027 https://doi.org/10.1071/FP16120
Submitted: 31 March 2016  Accepted: 22 July 2016   Published: 19 August 2016

Abstract

Salt stress, among other abiotic stresses, has a high impact on crop yield. Salt tolerance is a multifactorial trait that involves the ability of cells to retain K ions, regulate reactive O species (ROS) production, and synthesise new molecules to cope with osmotic stress. In the present work, two different cultivars of Cucumis sativus L. (cv. Parys, sensitive; cv. Polan, tolerant) were selected based on their germination capabilities under 100 mM NaCl. The capacity of these two cultivars to tolerate salt stress was analysed using several different physiological and genetic approaches. K+ fluxes from roots, as an immediate response to salinity, showed the higher ability of cv. Polan to maintain K+ compared with cv. Parys, according to the expression level of inward rectifying potassium channel 1 (AKT1). ROS production was also investigated in both cultivars and a higher basal ROS level was observed in cv. Polan than in cv. Parys. Concurrently, an increased basal level of respiratory burst oxidase homologue F (RBOHF) gene was also found, as well as a strong induction of the ethylene responsive factor 109 (ERF109) transcription factor after salt treatment in cv. Polan. Our data suggest that roots’ ability to retain K+, a higher level of RBOHF and a strong induction of ERF109 should all be considered important components for salt tolerance in C. sativus.

Additional keywords: cucumber, roots, salinity, salt stress, sodium chloride.


References

Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MRG, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+‐selective, K+‐sensing ion channel. FEBS Letters 486, 93–98.
GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+‐selective, K+‐sensing ion channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGiu7c%3D&md5=a56f188a928bc153fd04b04cecef26deCAS | 11113445PubMed |

Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology 14, 113
Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley.Crossref | GoogleScholarGoogle Scholar | 24774965PubMed |

Aleman F, Nieves-Cordones M, Martinez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant & Cell Physiology 52, 1603–1612.
Root K+ acquisition in plants: the Arabidopsis thaliana model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SiurvN&md5=a1a96191bb64f303574c0edd3956811aCAS |

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisL0%3D&md5=99fa8bbb1f5b69ffca6fc56116a2dc3fCAS | 15377225PubMed |

Ardie SW, Liu SK, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Reports 29, 865–874.
Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslals7w%3D&md5=fef4dd74cd2c8573cf3e0038e448af36CAS | 20532513PubMed |

Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular & Developmental Biology – Plant 44, 373–383.
Improving salinity tolerance in crop plants: a biotechnological view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyltbnE&md5=afdf3b799e3eef9ff171c7266341722bCAS |

Ashkan A, Jalal M (2013) Effects of salinity stress on seed germination and seedling vigor indices of two halophytic plant species (Agropyron elongatum and A. pectiniforme). International Journal of Agriculture and Crop Sciences 5, 2669–2676.

Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R (2007) Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiology 143, 1817–1826.
Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright yellow-2 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFWjtbg%3D&md5=aac175c5974506ccf8766d9f9772f701CAS | 17277088PubMed |

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229–1240.
ROS as key players in plant stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htLg%3D&md5=a11b4dee4918b474eb8d540f2f4eed2aCAS | 24253197PubMed |

Bazihizina N, Taiti C, Marti L, Rodrigo-Moreno A, Spinelli F, Giordano C, Caparrotta S, Gori M, Azzarello E, Mancuso S (2014) Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. Journal of Experimental Botany 65, 4931–4942.
Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitl2gurw%3D&md5=f140d9c6082c8201c2aceab04c1d49c7CAS | 24928985PubMed |

Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 365, 61–71.
Food security: contributions from science to a new and greener revolution.Crossref | GoogleScholarGoogle Scholar | 20008386PubMed |

Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, Abdelly C (2015) NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology 174, 5–15.
NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVanu7jE&md5=2f34d8cce325dca066b3e538efc64ddbCAS | 25462961PubMed |

Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. Journal of Experimental Botany
Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.Crossref | GoogleScholarGoogle Scholar | 27340231PubMed |

Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytologist 206, 557–570.
The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions.Crossref | GoogleScholarGoogle Scholar | 25495078PubMed |

Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Functional Plant Biology 34, 150–162.
Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqsbk%3D&md5=4677086b37e605b7d7c1f0739fcc8ef9CAS |

Chen J, Xiong D-Y, Wang W-H, Hu W-J, Simon M, Xiao Q, Liu T-W, Liu X, Zheng H-L (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS One 8, e71543
Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGjurrI&md5=1f1fdc30619b4e17e8bbae9b5b175f6fCAS | 23977070PubMed |

Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. Journal of Experimental Botany 57, 1045–1058.
Increasing salt tolerance in the tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Glsrc%3D&md5=4bcdf599de832e6ec7a981a2d8c966d6CAS | 16520333PubMed |

DeHaan LR, Weisberg S, Tilman D, Fornara D (2010) Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants. Agriculture, Ecosystems & Environment 137, 33–38.
Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants.Crossref | GoogleScholarGoogle Scholar |

Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist 175, 387–404.
Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSqs7w%3D&md5=28f18af110308042d50ac9b976eb612bCAS | 17635215PubMed |

Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annual Review of Plant Biology 53, 67–107.
Nonselective cation channels in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbw%3D&md5=ee36cd95467e4c535c254a4c10c479bdCAS | 12221989PubMed |

Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells. Journal of Cell Science 116, 81–88.
Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2lsA%3D%3D&md5=bbe911fd217c661f3beefb2a9da2c024CAS | 12456718PubMed |

Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science 123, 1468–1479.
Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1KmtL0%3D&md5=7b1ad2f920309e6e0948c07f83dc596cCAS | 20375061PubMed |

Duan CG, Wang CH, Guo HS (2008) Delayed resistance to Cucumber mosaic virus mediated by 3ʹUTR-derived hairpin RNA. Chinese Science Bulletin 53, 3301–3310.

Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Molecular Plant-Microbe Interactions 19, 931–936.
Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslOqs7o%3D&md5=c6c039d04c266ff84d6bfa49b2cce0a5CAS | 16903359PubMed |

Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280, 918–921.
A role for the AKT1 potassium channel in plant nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFKlurk%3D&md5=b8ddbc273a0341c05ba675bd01dc8986CAS | 9572739PubMed |

Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports 39, 969–987.
Signal transduction during cold, salt, and drought stresses in plants.Crossref | GoogleScholarGoogle Scholar | 21573796PubMed |

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K loss via a GORK channel. Journal of Experimental Botany 64, 2255–2268.
Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K loss via a GORK channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvV2nurs%3D&md5=b5ff92f0d94cad51580975a51ae40566CAS | 23580750PubMed |

Kere GM, Guo QW, Shen J, Xu J, Chen JF (2013) Heritability and gene effects for salinity tolerance in cucumber (Cucumis sativus L.) estimated by generation mean analysis. Scientia Horticulturae 159, 122–127.
Heritability and gene effects for salinity tolerance in cucumber (Cucumis sativus L.) estimated by generation mean analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSlsbzM&md5=ea978f830bdae2a1a3e5cd9b6d38623bCAS |

Keunen ELS, Peshev D, Vangronsveld J, Van Den Ende WIM, Cuypers ANN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment 36, 1242–1255.
Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVOntr4%3D&md5=21fa916422446821202cd4a9db8016c1CAS |

Khan A, Lang I, Amjid M, Shah A, Ahmad I, Nawaz H (2013) Inducing salt tolerance on growth and yield of sunflower by applying different levels of ascorbic acid. Journal of Plant Nutrition 36, 1180–1190.
Inducing salt tolerance on growth and yield of sunflower by applying different levels of ascorbic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivF2it7Y%3D&md5=cbcccdb762b975cc5fd20ffee1245dbcCAS |

Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291.
Enhancements and modifications of primer design program Primer3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOjur0%3D&md5=aee3f459faee7b874c8e0f5e8307477eCAS | 17379693PubMed |

Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63, 1593–1608.
Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlKhs7w%3D&md5=e7346d63aa4ee511534e53ac1d5adf0bCAS | 22291134PubMed |

Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C (1996) Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. The Plant Journal 9, 195–203.
Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVyjuro%3D&md5=b4e06f4bb49bca829e086c028dc4444bCAS | 8820606PubMed |

Lockhart J (2013) Salt of the earth: ethylene promotes salt tolerance by enhancing Na/K homeostasis. The Plant Cell 25, 3150
Salt of the earth: ethylene promotes salt tolerance by enhancing Na/K homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOktr3F&md5=e10143c916279b6e75b9825a45a22835CAS | 24064767PubMed |

Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. Journal of Experimental Botany 57, 1097–1107.
Dissecting salt stress pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Glsrk%3D&md5=fb841121a53bbc06c7b59ed893320bf0CAS | 16510518PubMed |

Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2011) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany 63, 305–317.
NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress.Crossref | GoogleScholarGoogle Scholar | 21984648PubMed |

Mancuso S, Papeschi G, Marras AM (2000) A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterisation of transmembrane oxygen fluxes in plants. Planta 211, 384–389.
A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterisation of transmembrane oxygen fluxes in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVWqsLw%3D&md5=e1ee44376496c0ac1b45aee824689b37CAS | 10987557PubMed |

Matsuo M, Oelmüller R (2015) REDOX RESPONSIVE TRANSCRIPTION FACTOR1 is involved in age-dependent and systemic stress signaling. Plant Signaling & Behavior 10, e1051279
REDOX RESPONSIVE TRANSCRIPTION FACTOR1 is involved in age-dependent and systemic stress signaling.Crossref | GoogleScholarGoogle Scholar |

Matsuo M, Johnson JM, Hieno A, Tokizawa M, Nomoto M, Tada Y, Godfrey R, Obokata J, Sherameti I, Yamamoto YY, Bohmer FD, Oelmuller R (2015) High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots. Molecular Plant 8, 1253–1273.
High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFygsrrI&md5=8766b83f464cc17e0086dc9855733c39CAS | 25882345PubMed |

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51, 659–668.
Chlorophyll fluorescence – a practical guide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtF2js74%3D&md5=b2079d1ff209536207d91054c5b02220CAS | 10938857PubMed |

Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany 89, 895–905.
Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVeitLc%3D&md5=ec06910ff7b8118fabb89560b0555e84CAS | 12102515PubMed |

Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133, 481–489.
Reactive oxygen signaling and abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlymsrY%3D&md5=ad285f6497b79c1e2bc78cdaa42174a0CAS | 18346071PubMed |

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405–410.
Oxidative stress, antioxidants and stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVWnu7Y%3D&md5=a9c33b8f88b87c4f315a8314d742a6d9CAS | 12234732PubMed |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
Reactive oxygen gene network of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2msrg%3D&md5=4828e9fd382be23c0fe9286aea343417CAS | 15465684PubMed |

Munns R (2005) Genes and salt tolerance: bringing them together. New Phytologist 167, 645–663.
Genes and salt tolerance: bringing them together.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGisbfP&md5=8fe6bc89fa7bf2db6d4f7f44c2294ae5CAS | 16101905PubMed |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=dd68a82a6d2c6414e1266213f98edac3CAS | 18444910PubMed |

Pandolfi C, Mancuso S, Shabala S (2012) Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany 84, 44–51.
Physiology of acclimation to salinity stress in pea (Pisum sativum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2itrnN&md5=0e9d98439d49e949e669e7d5948245c1CAS |

Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environmental and Experimental Botany 107, 71–83.
Halophyte agriculture: success stories.Crossref | GoogleScholarGoogle Scholar |

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=79c488a0ef278e2273a84ed788c02263CAS | 11328886PubMed |

Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters 339, 62–66.
Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Kks70%3D&md5=0f9a93aae699a49175d9f1e47de427a3CAS | 12618301PubMed |

Rodríguez AA, Taleisnik EL (2012) Determination of reactive oxygen species in salt-stressed plant tissues. In ‘Plant salt tolerance: methods and protocols’. (Eds S Shabala, AT Cuin) pp. 225–236. (Humana Press: Totowa, NJ)

Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ (1992) A microplate assay for the detection of oxidative products using 2ʹ,7ʹ-dichlorofluorescin-diacetate. Journal of Immunological Methods 156, 39–45.
A microplate assay for the detection of oxidative products using 2ʹ,7ʹ-dichlorofluorescin-diacetate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvFymtQ%3D%3D&md5=c747c0add520cbb1ed7e16024cbc4c3bCAS | 1431161PubMed |

Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663–665.
Cloning and expression in yeast of a plant potassium ion transport system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVKhsrs%3D&md5=333d08bad3408c797164e886e1dc6c37CAS | 1585180PubMed |

Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Annals of Botany 92, 627–634.
Regulation of potassium transport in leaves: from molecular to tissue level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVOnsbw%3D&md5=3fa47d420983df37f9529c55514fd5a5CAS | 14500326PubMed |

Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany 112, 1209–1221.
Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.Crossref | GoogleScholarGoogle Scholar | 24085482PubMed |

Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669.
Potassium transport and plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Oit70%3D&md5=e3b7086a1c0639a11d71b2068d781bd9CAS | 18724408PubMed |

Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum 151, 257–279.
Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1OjtL0%3D&md5=a0acade96ec4a194c130a751673c8ed0CAS | 24506225PubMed |

Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology 141, 1653–1665.
Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKitbo%3D&md5=6c9da843f45a66bc80097588e3964869CAS | 16798942PubMed |

Stępień P, Kłbus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum 50, 610–616.
Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress.Crossref | GoogleScholarGoogle Scholar |

Sun Z, Qi X, Wang Z, Li P, Wu C, Zhang H, Zhao Y (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiology and Biochemistry 69, 82–89.
Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptV2ht7k%3D&md5=e5aaa2b24b4edf3d9ed9d27777cfe8bfCAS | 23728391PubMed |

Torres MA (2010) ROS in biotic interactions. Physiologia Plantarum 138, 414–429.
ROS in biotic interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlOkt7g%3D&md5=b79e73f6c3062dff1c2eb7e74d24e0ffCAS | 20002601PubMed |

Tran D, El-Maarouf-Bouteau H, Rossi M, Biligui B, Briand J, Kawano T, Mancuso S, Bouteau F (2013) Post-transcriptional regulation of GORK channels by superoxide anion contributes to increases in outward-rectifying K+ currents. New Phytologist 198, 1039–1048.
Post-transcriptional regulation of GORK channels by superoxide anion contributes to increases in outward-rectifying K+ currents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVWiu7c%3D&md5=fe7c419a6cc56b383d992709ec685f47CAS | 23517047PubMed |

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 – new capabilities and interfaces. Nucleic Acids Research 40, e115
Primer3 – new capabilities and interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kjs7nF&md5=af820f1c1ef505552d5b114129179319CAS | 22730293PubMed |

Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review of Plant Biology 54, 575–603.
Molecular mechanisms and regulation of K+ transport in higher plants.Crossref | GoogleScholarGoogle Scholar | 14503004PubMed |

Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology 171, 748–769.
Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?Crossref | GoogleScholarGoogle Scholar | 24666983PubMed |

Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annual Review of Plant Biology 64, 451–476.
Potassium transport and signaling in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFSktb0%3D&md5=3029c165b3c1a141704b2f218838062cCAS | 23330792PubMed |

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2, e718
An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets.Crossref | GoogleScholarGoogle Scholar | 17684564PubMed |

Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America 105, 4945–4950.
Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlShsb8%3D&md5=9ca2978f5eae0b2f571b885223505ae1CAS | 18356294PubMed |