Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso)flavonoids and antioxidant defence in Medicago sativa

Yanjie Xie A , Wei Zhang A , Xingliang Duan A , Chen Dai A , Yihua Zhang A , Weiti Cui A , Ren Wang B and Wenbiao Shen A C
+ Author Affiliations
- Author Affiliations

A College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

B Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing 210014, China.

C Corresponding author. Email: wbshenh@njau.edu.cn

Functional Plant Biology 42(12) 1141-1157 https://doi.org/10.1071/FP15204
Submitted: 27 January 2015  Accepted: 11 September 2015   Published: 20 October 2015

Abstract

External administration of hydrogen gas (H2) benefits plants from multiple environmental stimuli. However, the physiological significance and molecular mechanism of H2 in ultraviolet-B (UVB) irradiation are largely unexplored. Here, the biological function of H2 in the regulation of plant UVB-tolerance was investigated by using hydrogen-rich water (HRW). Results showed that the exposure of alfalfa seedlings to UVB irradiation increased endogenous H2 production. Pretreatment with HRW mimicked the UVB-induced endogenous H2 production. Corresponding UVB-triggered toxic symptoms, in terms of lipid peroxidation and overproduction of reactive oxygen species (ROS), as well as the subsequent growth inhibition, were markedly mitigated. Metabolic profiling analysis by using ultra performance liquid chromatography-mass spectrometric (UPLC-MS), identified 40 (iso)flavonoids in UVB-treated alfalfa plants, with 22 kinds was increased by HRW. These changes resulted in the alternation of (iso)flavonoids profile, with the effective promotion of isoflavone and flavanone subfamilies in particular. These compounds included afromosin, afromosin 7-O-β-D-glucoside-malonate, daidzein, formononetin 7-O-β-D-glucoside-6ʹʹ-O-malonate, garbanzol, matteucin and naringenin. In vitro tests further showed that the HRW-modulated (iso)flavonoids profile upon UVB stress possessed advanced ROS-quenching and antioxidant capacities under our experimental conditions. Meanwhile, UVB-triggered upregulation in the transcription levels of (iso)flavonoids biosynthetic-related genes were substantially strengthened by HRW. The activities and related transcripts of representative antioxidant enzymes were also induced. Taken together, our findings indicate that HRW confers tolerance to UVB-induced oxidative damage partially by the manipulation of (iso)flavonoids metabolism and antioxidant defence in Medicago sativa L.

Additional keywords: antioxidant defence, hydrogen-rich water, (iso)flavonoids metabolism, UV-induced oxidative stress.


References

Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. The Plant Journal 41, 875–887.
Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisleitrY%3D&md5=61e73b6b350e75649f3028e0e811bbfdCAS | 15743451PubMed |

Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology 168, 204–212.
The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ajtbjE&md5=935749e8d806fbae61ea55d84eb719f1CAS | 20850892PubMed |

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisL0%3D&md5=93eef19eb75b47643a44d45a8fb0dcbbCAS | 15377225PubMed |

Asen S, Norris KH, Stewart RN (1972) Copigmentation of aurone and flavone from petals of Antirrhinum majus. Phytochemistry 11, 2739–2741.
Copigmentation of aurone and flavone from petals of Antirrhinum majus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkvFyru7k%3D&md5=46d78360d1f4278de89a6c788dd5456aCAS |

Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287.
Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XjtFKhsg%3D%3D&md5=5ff34b369781ad3659c30102dbcba981CAS | 4943714PubMed |

Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiology 122, 1379–1386.
Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFWjsrg%3D&md5=e65f4e5c08f34ff55b163690432e96cbCAS | 10759534PubMed |

Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro B, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell & Environment 33, 1–10.
Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOqsL0%3D&md5=5a475a489d69239fa699b93cd84d76caCAS |

Bernal M, Llorens L, Badosa J, Verdaguer D (2013) Interactive effects of UV radiation and water availability on seedlings of six woody mediterranean species. Physiologia Plantarum 147, 234–247.
Interactive effects of UV radiation and water availability on seedlings of six woody mediterranean species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFKqtLs%3D&md5=2079bb98214cb2ec5df54f3e0f466853CAS | 22671961PubMed |

Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology 126, 1105–1115.
An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvgs1Gltg%3D%3D&md5=268b11fb53d2a27efa36bc3d285116eeCAS | 11457961PubMed |

Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. Journal of Integrative Plant Biology 52, 98–111.
Flavonoids: new roles for old molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOhsLc%3D&md5=13f751db15bf3977bb22f9cd2194995fCAS | 20074144PubMed |

Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. Journal of the Science of Food and Agriculture 90, 1238–1244.
Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslOntr4%3D&md5=e8419515da678e5710672bd11e01f2d2CAS | 20394007PubMed |

Chen JJ, Lee HH, Duh CY, Chen IS (2005) Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura. Planta Medica 71, 970–973.
Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgtb7I&md5=27b795d011edaf6c32e9d615e91018d3CAS | 16254834PubMed |

Cui W, Gao C, Fang P, Lin G, Shen W (2013) Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. Journal of Hazardous Materials 260, 715–724.
Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylsLnM&md5=2ba331a6f5aad3e1e4eea8a1df725b5fCAS | 23846121PubMed |

De Araújo Lopes A, Magalhães TR, de Andrade Uchôa DE, Silveira ER, Azzolini AE, Kabeya LM, Lucisano-Valim YM, Vasconcelos SM, de Barros Viana GS, Leal LK (2013) Afrormosin, an isoflavonoid from Amburana cearensis A.C.Smith, modulates the inflammatory response of stimulated human neutrophils. Basic & Clinical Pharmacology & Toxicology 113, 363–369.
Afrormosin, an isoflavonoid from Amburana cearensis A.C.Smith, modulates the inflammatory response of stimulated human neutrophils.Crossref | GoogleScholarGoogle Scholar |

Deavours BE, Liu CJ, Naoumkina MA, Tang Y, Farag MA, Sumner LW, Noel JP, Dixon RA (2006) Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Molecular Biology 62, 715–733.
Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaks7fF&md5=1584bbcadc9d471d6c9c466ae215ad7dCAS | 17001495PubMed |

Draper CK, Hays JB (2000) Replication of chloroplast, mitochondrial and nuclear DNA during growth of unirradiated and UVB-irradiated Arabidopsis leaves. The Plant Journal 23, 255–265.
Replication of chloroplast, mitochondrial and nuclear DNA during growth of unirradiated and UVB-irradiated Arabidopsis leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFOnsLo%3D&md5=25ea91f70ebe59347bd0ad1875009585CAS | 10929119PubMed |

Dwiecki K, Neunert G, Polewski P, Polewski K (2009) Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. Journal of Photochemistry and Photobiology. B, Biology 96, 242–248.
Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVenu7fP&md5=e78d5974b0ba920453aed86c3f5b8910CAS | 19648024PubMed |

Engelmann MD, Hutcheson R, Cheng IF (2005) Stability of ferric complexes with 3-hydroxyflavone (flavonol), 5,7-dihydroxyflavone (chrysin), and 3ʹ,4ʹ-dihydroxyflavone. Journal of Agricultural and Food Chemistry 53, 2953–2960.
Stability of ferric complexes with 3-hydroxyflavone (flavonol), 5,7-dihydroxyflavone (chrysin), and 3ʹ,4ʹ-dihydroxyflavone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ensLw%3D&md5=3164297f0720b2a3cb01fd7c29d3f470CAS | 15826045PubMed |

Farag MA, Huhman DV, Lei Z, Sumner LW (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68, 342–354.
Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlGmtQ%3D%3D&md5=bb1240508da3abd9672c8abd98bbd7a9CAS | 17156801PubMed |

Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology 146, 387–402.
Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCmtrs%3D&md5=b7e3faec4968f75cb8e71ffe430948f1CAS | 18055588PubMed |

Farag MA, Sharaf EMG, Kassem H, Fetouh MA (2013) Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential. Phytochemical Analysis 24, 277–287.
Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyktrfF&md5=48381c0f3acec575fb63c68bdd7aaaf8CAS | 23055344PubMed |

Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior 6, 709–711.
Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlOhs78%3D&md5=50664a4c129d5b985bbb0d24ac959a64CAS |

Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiology 133, 1420–1428.
Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFWg&md5=4ea9a3eb3092f54045a117d3a4294ed2CAS | 14681524PubMed |

Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S (2007) Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochemical and Biophysical Research Communications 361, 670–674.
Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFOktbw%3D&md5=d6f3d04f4d42b268a1b5c984508f24b3CAS | 17673169PubMed |

Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA (2011) Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist 190, 627–639.
Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1enurc%3D&md5=9b6cbb5a30c7a7b6b92e22dea553a0ecCAS | 21251001PubMed |

Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Journal of Plant Physiology 165, 138–148.
Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSmurc%3D&md5=680473e2e788d8ef81bbbc524f2b4ab0CAS | 17561306PubMed |

Guo Z, Zhou B, Li W, Sun X, Luo D (2012) Hydrogen-rich saline protects against ultraviolet B radiation injury in rats. Journal of Biomedical Research 26, 365–371.
Hydrogen-rich saline protects against ultraviolet B radiation injury in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ms77E&md5=1d8d0cea6b1138c0f10595a4d56b4d4eCAS | 23554772PubMed |

Han Y, Zhang J, Chen X, Gao Z, Xuan W, Xu S, Ding X, Shen W (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytologist 177, 155–166.
Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ylug%3D%3D&md5=87ba8a5fb7d06f7793b05b3ca3ee8e5aCAS | 18028301PubMed |

Han B, Yang Z, Samma MK, Wang R, Shen W (2013) Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis. Biometals 26, 403–413.
Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpt1yksrY%3D&md5=eca54c64a3c8ec8320ecccb3e86ec563CAS | 23547009PubMed |

Hideg É, Jansen MA, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Science 18, 107–115.
UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCgtbfP&md5=bdf24660c95578115a49338f39ded0e0CAS | 23084465PubMed |

Hu H, Li P, Wang Y, Gu R (2014) Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chemistry 156, 100–109.
Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlCrtbo%3D&md5=2ccb60978cf569fbcd36d1617b058f95CAS | 24629944PubMed |

Huang X, Ouyang X, Yang P, Lau O, Li G, Li J, Chen H, Deng X (2012) Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. The Plant Cell 24, 4590–4606.
Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKltw%3D%3D&md5=74bf145abc44e5ac29f3a7bf2c6c6a59CAS | 23150635PubMed |

Ibrahim AR, Galal AM, Ahmed MS, Mossa GS (2003) O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chemical and Pharmaceutical Bulletin 51, 203–206.
O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans.Crossref | GoogleScholarGoogle Scholar | 12576658PubMed |

Ingham JL (1979) Isoflavonoid phytoalexins of the genus Medicago. Biochemical Systematics and Ecology 7, 29–34.
Isoflavonoid phytoalexins of the genus Medicago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktFKrtrw%3D&md5=2d7c2be6285722fef19146ee471651e5CAS |

Jansen M, Gaba V, Geenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science 3, 131–135.
Higher plants and UV-B radiation: balancing damage, repair and acclimation.Crossref | GoogleScholarGoogle Scholar |

Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology 60, 407–431.
Signal transduction in responses to UV-B radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFGlsLo%3D&md5=7c9b4b98f7328ebea3113cbb3ca5d1ffCAS | 19400728PubMed |

Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant, Cell & Environment 36, 956–969.
Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFyqtbg%3D&md5=c1705c202a83538830e58ca9e87253f5CAS |

Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnology 18, 208–212.
Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVOltbw%3D&md5=a62e3545996465da9ebfd88f131ea75bCAS | 10657130PubMed |

Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350–382.
Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Cgu78%3D&md5=10db2f7d7e0da88078567de9678c836cCAS |

Lidon FC, Ramalho JC (2011) Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. Journal of Photochemistry and Photobiology. B, Biology 104, 457–466.
Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslWrtLs%3D&md5=f282b3085642db8adeca98f86ea52ac0CAS | 21696979PubMed |

Lidon FJC, Teixeira M, Ramalho JC (2012) Decay of the chloroplast pool of ascorbate switches on the oxidative burst in UV-B-irradiated rice. Journal Agronomy & Crop Science 198, 130–144.
Decay of the chloroplast pool of ascorbate switches on the oxidative burst in UV-B-irradiated rice.Crossref | GoogleScholarGoogle Scholar |

Lin LZ, He XG, Lindenmaier M, Nolan G, Yang J, Cleary M, Qiu SX, Cordell GA (2000) Liquid chromatography-electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. Journal of Chromatography. A 876, 87–95.
Liquid chromatography-electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislensL4%3D&md5=bff42da8bd674d86618f9cc7f2b59256CAS | 10823504PubMed |

Liu C, Cui J, Sun Q, Cai J (2010) Hydrogen therapy may be an effective and specific novel treatment for acute radiation syndrome. Medical Hypotheses 74, 145–146.
Hydrogen therapy may be an effective and specific novel treatment for acute radiation syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShu7bK&md5=53440ff7042f363819e6d579b3079d74CAS | 19664884PubMed |

Mabry TJ, Markham KR, Thomas MB (1970) The ultraviolet spectra of flavones and flavonols. In ‘The systematic identification of flavonoids’. (Eds TJ Mabry, KR Markham, MB Thomas) pp. 41–164. (Springer: Berlin)

Marczak Ł, Stobiecki M, Jasiński M, Oleszek W, Kachlicki P (2010) Fragmentation pathways of acylated flavonoid diglucuronides from leaves of Medicago truncatula. Phytochemical Analysis 21, 224–233.
Fragmentation pathways of acylated flavonoid diglucuronides from leaves of Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFCmurc%3D&md5=e1a44dd7d79cbfc951cc6b5d8f55c077CAS | 19950391PubMed |

Meckes M, Paz D, Acosta J, Mata R (1998) The effects of chrysin and pinostrobin, two flavonoids isolated from Teloxys graveolens leaves, on isolated guinea-pig ileum. Phytomedicine 5, 459–463.
The effects of chrysin and pinostrobin, two flavonoids isolated from Teloxys graveolens leaves, on isolated guinea-pig ileum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXoslSjug%3D%3D&md5=83b014e9b567bd0696b95065a673c326CAS | 23196029PubMed |

Modolo LV, Blount JW, Achnine L, Naoumkina MA, Wang X, Dixon RA (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Molecular Biology 64, 499–518.
A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlSht74%3D&md5=ad730cdbe7825b9955a504b71586f013CAS | 17437063PubMed |

Morales L, Brosché M, Vainonen J, Jenkins G, Wargent J, Strid N, Lindfors A, Tegelberg R, Aphalo P (2013) Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiology 161, 744–759.
Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqs70%3D&md5=0ba32c447cf0012d9f0fbe83926b825eCAS | 23250626PubMed |

Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America 104, 17909–17915.
Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaks7vK&md5=f0d3074d7c2ac1ad0ffb3e7261491576CAS | 17971436PubMed |

Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine 13, 688–694.
Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFeksrc%3D&md5=934b46ba90c115d70cbf986e43a9e311CAS | 17486089PubMed |

Pang Y, Abeysinghe IS, He J, He X, Huhman D, Mewan KM, Sumner LW, Yun J, Dixon RA (2013) Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiology 161, 1103–1116.
Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKrtLs%3D&md5=2669f0d8db75a384bc2011df021bd827CAS | 23288883PubMed |

Piccinelli AL, De Simone F, Passi S, Rastrelli L (2004) Phenolic constituents and antioxidant activity of Wendita calysina leaves (Burrito), a folk Paraguayan tea. Journal of Agricultural and Food Chemistry 52, 5863–5868.
Phenolic constituents and antioxidant activity of Wendita calysina leaves (Burrito), a folk Paraguayan tea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslaqt7Y%3D&md5=2dcf8d1d42f2c885841a7e814b8c227fCAS | 15366833PubMed |

Qian L, Cao F, Cui J, Huang Y, Zhou X, Liu S, Cai J (2010a) Radioprotective effect of hydrogen in cultured cells and mice. Free Radical Research 44, 275–282.
Radioprotective effect of hydrogen in cultured cells and mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitF2ru7g%3D&md5=e9a4220d65b39eec351162d66c76f53bCAS | 20166892PubMed |

Qian L, Li B, Cao F, Huang Y, Liu S, Cai J, Gao F (2010b) Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage. Nuclear Technology and Radiation Protection 25, 23–29.
Hydrogen-rich PBS protects cultured human cells from ionizing radiation-induced cellular damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWqtr3M&md5=3674c662ec14c839ff9b8b7287cf85d7CAS |

Rahman AU, Khan AA (1962) The isolation of citronin from the peel of argentine oranges (naranja dulce): Citrus sinensis, Linn. Recueil des Travaux Chimiques des Pays-Bas 81, 102–106.
The isolation of citronin from the peel of argentine oranges (naranja dulce): Citrus sinensis, Linn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XnvFentQ%3D%3D&md5=71f7f0f287f337d4744e793b7368a235CAS |

Rao JR, Rao RS (1991) Syzalterin, a new 6,8-di-C-methylflavone from Syzygium alternifolium leaves. Indian Journal of Chemistry 30B, 66–67.
Syzalterin, a new 6,8-di-C-methylflavone from Syzygium alternifolium leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtl2rsL4%3D&md5=2ccc0d2a86751d705d21fa6a96d7aee9CAS |

Rao YK, Harikishore P, Rao CV, Gunasekar D, Blond A, Bodo B (2002) Flavones from Andrographis viscosula. Phytochemistry 61, 927–929.
Flavones from Andrographis viscosula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFGnsrk%3D&md5=109a18119b5d3051f4bcb10229ded361CAS | 12453519PubMed |

Sacco S, Maffei M (1997) The effect of isosakuranetin (5,7-dihydroxy 4ʹ-methoxy flavanone) on potassium uptake in wheat root segments. Phytochemistry 46, 245–248.
The effect of isosakuranetin (5,7-dihydroxy 4ʹ-methoxy flavanone) on potassium uptake in wheat root segments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1ymtL8%3D&md5=3d66c2aee7f2f067d84aa4c26dc10829CAS |

Schoenfeld MP, Ansari RR, Zakrajsek JF, Billiar TR, Toyoda Y, Wink DA, Nakao A (2011) Hydrogen therapy may reduce the risks related to radiation-induced oxidative stress in space flight. Medical Hypotheses 76, 117–118.
Hydrogen therapy may reduce the risks related to radiation-induced oxidative stress in space flight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFygtbfM&md5=95173497cd2eac99ada52d732f1cfcb8CAS | 20851533PubMed |

Shiu CT, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. Journal of Experimental Botany 56, 2851–2865.
Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCjt7jM&md5=26c65b1a95fd59c2bc5bb940a71ab20dCAS | 16157654PubMed |

Sim KY (1967) The syntheses of mikanin, combretol, and 3,5,7-trihydroxy-2ʹ-methoxyflavone, and the purification of flavones by sublimation. Journal of the Chemical Society. Perkin Transactions 1 1, 976–979.
The syntheses of mikanin, combretol, and 3,5,7-trihydroxy-2ʹ-methoxyflavone, and the purification of flavones by sublimation.Crossref | GoogleScholarGoogle Scholar |

Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64, 21–30.
Flavonoid–insect interactions: recent advances in our knowledge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Oktbg%3D&md5=29833d469f430f2db9bb4cca7925470dCAS | 12946403PubMed |

Sritularak B, Likhitwitayawuid K, Conrad J, Vogler B, Reeb S, Klaiber I, Kraus W (2002) New flavones from Millettia erythrocalyx. Journal of Natural Products 65, 589–591.
New flavones from Millettia erythrocalyx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslamt7Y%3D&md5=b2abb2bff6d497785b5779fd03da2c65CAS | 11975509PubMed |

Stratmann J (2003) Ultraviolet-B radiation co-opts defense signaling pathways. Trends in Plant Science 8, 526–533.
Ultraviolet-B radiation co-opts defense signaling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Cnsrs%3D&md5=78e10503d2907c07c621a89537c17f3dCAS | 14607097PubMed |

Su N, Wu Q, Liu Y, Cai J, Shen W, Xia K, Cui J (2014) Hydrogen-rich water re-establishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. Journal of Agricultural and Food Chemistry 62, 6454–6462.
Hydrogen-rich water re-establishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVajsrbF&md5=48fb34b7bccb76e46d2dba58e7412eefCAS | 24955879PubMed |

Torres V, Ballesteros A, Fernández VM, Núñez M (1984) Expression of hydrogenase activity in cereals. Annals of the New York Academy of Sciences 434, 296–298.
Expression of hydrogenase activity in cereals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXptlSnsw%3D%3D&md5=7a4dcc2e41a2922c97a4212ef81355d6CAS |

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research0034–research0034.11.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar | 12184808PubMed |

Veitch NC (2009) Isoflavonoids of the leguminosae. Natural Product Reports 26, 776–802.
Isoflavonoids of the leguminosae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtl2lu7c%3D&md5=58f5ff10f4b7ca4902797c8fde9bc63cCAS | 19471685PubMed |

Veitch NC (2010) Flavonoid chemistry of the leguminosae. In ‘Recent advances in polyhenol research. Vol. 2’. (Eds C Santos-Buelga, MT Escribano-Bailon, V Lattanzio) pp. 23–58. (Wiley-Blackwell: Oxford)

Waterman PG, Mahmoud EN (1985) Flavonoids from the seeds of Lonchocarpus costaricensis. Phytochemistry 24, 571–574.
Flavonoids from the seeds of Lonchocarpus costaricensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktF2rsLg%3D&md5=44883e95405d4a7d9aba8d8278cc6280CAS |

Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Analytical Biochemistry 44, 301–305.
An improved procedure using ferricyanide for detecting catalase isozymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XktlWmtA%3D%3D&md5=befa90b1318b9775e940fbe66dd022eaCAS | 4109029PubMed |

Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. Journal of Experimental Botany 62, 235–248.
Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamurbM&md5=8f1e29f74563b7530137e936bcee2c35CAS | 20797999PubMed |

Wu Q, Su N, Cai J, Shen Z, Cui J (2015) Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. Journal of Plant Physiology 175, 174–182.
Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXislKqtg%3D%3D&md5=162b0ee58d10f817c98e7f4755650b78CAS | 25543863PubMed |

Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD- derived reactive oxygen species synthesis. The Plant Journal 66, 280–292.
Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD- derived reactive oxygen species synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFKktLo%3D&md5=aa7a032018dff3c384052698d0f61c2bCAS | 21205037PubMed |

Xie Y, Mao Y, Lai D, Zhang W, Shen W (2012) H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 7, e49800
H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVags7vP&md5=80352d7b24e83194b7942f56ba0e637bCAS | 23185443PubMed |

Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiology 165, 759–773.
Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWnurbI&md5=5caa9000c7dd8bb7e05739da5a47f24dCAS | 24733882PubMed |

Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiology 125, 738–751.
Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1KlsLk%3D&md5=197a2cc113f439e3ebf6f61af0895b3fCAS | 11161031PubMed |

Xu S, Zhu S, Jiang Y, Wang N, Wang R, Shen W, Yang J (2013) Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant and Soil 370, 47–57.
Hydrogen-rich water alleviates salt stress in rice during seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Oiu77P&md5=804bad4532794cce96f56514eac999cdCAS |

Yin R, Arongaus A, Binkert M, Ulm R (2015) Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. The Plant Cell 27, 202–213.
Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1WmtLw%3D&md5=2045d14c0a29485a0d213869718980cfCAS | 25627067PubMed |

Zeng J, Zhang M, Sun X (2013) Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One 8, e71038
Molecular hydrogen is involved in phytohormone signaling and stress responses in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlamsb%2FK&md5=d2486a6d1c8083ba02ba5a62064a6bdaCAS | 23951075PubMed |

Zhang H, Shen WB, Xu LL (2003) Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Botanica Sinica 45, 901–905.
Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSgtL3E&md5=17df5feefb0d8393090afa9a6f579fb7CAS |

Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X (2011) Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. International Journal of Cardiology 148, 91–95.
Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion.Crossref | GoogleScholarGoogle Scholar | 20851484PubMed |

Zhao L, Zhou C, Zhang J, Gao F, Li B, Chuai Y, Liu C, Cai J (2011) Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice. International Journal of Biological Sciences 7, 297–300.
Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFKitrY%3D&md5=040c9a70185636927a376ab75e04ad89CAS | 21448340PubMed |