Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Genetic diversity for root plasticity and nitrogen uptake in wheat seedlings

Vanessa J. Melino A D , Gabriele Fiene A , Akiko Enju A , Jinhai Cai B , Peter Buchner C and Sigrid Heuer A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, PMB1 Glen Osmond, SA, Australia.

B Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, SA 5095, Australia.

C Rothamsted Research, Plant Biology and Crop Science Department, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.

D Corresponding author. Email: vanessa.melino@acpfg.com.au

Functional Plant Biology 42(10) 942-956 https://doi.org/10.1071/FP15041
Submitted: 19 February 2015  Accepted: 22 June 2015   Published: 7 August 2015

Abstract

Enhancing nitrogen use efficiency (NUE) of wheat is a major focus for wheat breeding programs. NUE may be improved by identifying genotypes that are competitive for nitrogen (N) uptake in early vegetative stages of growth and are able to invest that N in grain. Breeders tend to select high yielding genotypes under conditions of medium to high N supply, but it is not known whether this influences the selection of root plasticity traits or whether, over time, breeders have selected genotypes with higher N uptake efficiency. To address this, genotypes were selected from CIMMYT (1966–1985) and Australian (1999–2007) breeding programs. Genotypes from both programs responded to low N supply by expanding their root surface area through increased total root number and/or length of lateral roots. Australian genotypes were N responsive (accumulated more N under high N than under low N) whereas CIMMYT genotypes were not very N responsive. This could not be explained by differences in N uptake capacity as shown by 15N flux analysis of two representative genotypes with contrasting N accumulation. Expression analysis of nitrate transporter genes revealed that the high-affinity transport system accounted for the majority of root nitrate uptake in wheat seedlings under both low and high N conditions.

Additional keywords: root foraging, nitrate transporters, nitrate uptake.


References

BOM (2014) ‘Bureau of meterology.’ Available at http://www.bom.gov.au/ [Accessed 9 December 014].

Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Australian Journal of Agricultural Research 53, 1137–1145.
Field evaluation of early vigour for genetic improvement of grain yield in wheat.Crossref | GoogleScholarGoogle Scholar |

Buchner P, Hawkesford MJ (2014) Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat. Journal of Experimental Botany 65, 5697–5710.
Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat.Crossref | GoogleScholarGoogle Scholar | 24913625PubMed |

Cai J, Zeng Z, Connor J, Huang C, Melino V, Kumar P, Miklavcic SJ (2015) Rootgraph: an image analysis and graphic optimization tool for the automated analysis of plant root systems. Journal of Experimental Botany
Rootgraph: an image analysis and graphic optimization tool for the automated analysis of plant root systems.Crossref | GoogleScholarGoogle Scholar | 26224880PubMed |

Coleman RK, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Australian Journal of Agricultural Research 52, 1235–1246.
Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOnuw%3D%3D&md5=819d53ad14fba3c2e3e661f667d2dba7CAS |

Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and growth of seminal root system in barley. 1. Effect of nitrate concentration on growth of axes and laterals. Journal of Experimental Botany 24, 1189–1202.
Nutrient supply and growth of seminal root system in barley. 1. Effect of nitrate concentration on growth of axes and laterals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhsVCktrY%3D&md5=a0a1da32f0bc89dafea9595b0bd1b3bfCAS |

Forde BG (2014) Nitrogen signalling pathways shaping root system architecture: an update. Current Opinion in Plant Biology 21, 30–36.
Nitrogen signalling pathways shaping root system architecture: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ensbfI&md5=4ada1ee05492451428a50ade29b64308CAS | 24997289PubMed |

Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell & Environment 32, 1272–1283.
Root based approaches to improving nitrogen use efficiency in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGhtrfF&md5=b6fca695f4e54133dae7e5488bb1c487CAS |

Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, Boughton B, Bacic A, Shirley N, Rafalski A, Dhugga K, Tester M, Kaiser BN (2013) The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist 198, 82–94.
The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWnt7Y%3D&md5=c6b55f301d91fe099680a78ef32b2c09CAS | 23398565PubMed |

Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National Academy of Sciences of the United States of America 105, 803–808.
Cell-specific nitrogen responses mediate developmental plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSisrw%3D&md5=4512f9b31000656945c3fa418a78bd34CAS | 18180456PubMed |

Guo FQ, Wang RC, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. Journal of Experimental Botany 53, 835–844.
The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSntLk%3D&md5=5314a8ab9888d51f35f8791142c891e8CAS | 11912226PubMed |

Hackett C (1972) A method of applying nutrients locally to roots under controlled conditions, and some morphological effects of locally applied nitrate on the branching of wheat roots. Australian Journal of Biological Sciences 25, 1169–1180.

Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58, 2369–2387.
The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1ykt74%3D&md5=22c039d0b3b8a37715bed8500d17318bCAS | 17556767PubMed |

Ho C-H, Lin S-H, Hu H-C, Tsay Y-F (2009) CHL1 functions as a nitrate sensor in plants. Cell 138, 1184–1194.
CHL1 functions as a nitrate sensor in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyrsbvF&md5=e4ddfe975a458f023447e8f16e59f14bCAS | 19766570PubMed |

Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany 59, 3327–3346.
Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWit7rE&md5=d580aa6e39586bcc04fe7f9a49a16ed5CAS | 18703496PubMed |

Johnson CM, Stout PR, Broyer TC, Carlton AB (1957) Comparative chlorine requirements of different plant species. Plant and Soil 8, 337–353.

Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18, 927–937.
Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Kqt70%3D&md5=29fbfe7087b7889ef68419a00371427cCAS | 20627075PubMed |

Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theoretical and Applied Genetics 113, 1131–1146.
A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSktbfP&md5=28cf2c2e6c1373177d67718c324296abCAS | 16909280PubMed |

Le Gouis J, Beghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. European Journal of Agronomy 12, 163–173.
Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFKnt7s%3D&md5=0288fc450be315e28167ff8a120acc3cCAS |

Léran S, Varala K, Boyer J-C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J-M, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay Y-F, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science 19, 5–9.
A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants.Crossref | GoogleScholarGoogle Scholar | 24055139PubMed |

Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology 143, 425–433.
Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Olsg%3D%3D&md5=0ee0836923148db6c6f4529805955176CAS | 17085507PubMed |

Liao M, Fillery IRP, Palta JA (2004) Early vigorous growth is a major factor influencing N uptake in wheat. Functional Plant Biology 31, 121–129.
Early vigorous growth is a major factor influencing N uptake in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsl2gtrk%3D&md5=d8ea1fdc343e44d9e8a13f1e0d85bfe0CAS |

Liao MT, Palta JA, Fillery IRP (2006) Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research 57, 1097–1107.
Root characteristics of vigorous wheat improve early nitrogen uptake.Crossref | GoogleScholarGoogle Scholar |

Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal 29, 751–760.
Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs12msr8%3D&md5=1ab6420bda3c6cad7974c185fb2339ccCAS | 12148533PubMed |

Little DY, Rao HY, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America 102, 13693–13698.
The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygtrzE&md5=1c200bb1cf03a91aaeaa48389549754fCAS | 16157886PubMed |

Liu K-H, Tsay Y-F (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO Journal 22, 1005–1013.
Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1ylsLg%3D&md5=247dffc37468f9ccf068cb9e46c35265CAS | 12606566PubMed |

Liu K-H, Huang C-Y, Tsay Y-F (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell Online 11, 865–874.
CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVWqu7Y%3D&md5=e5ef8996e33c04daf2f2c658c624c782CAS |

Malagoli P, Lainé P, Le Deunff E, Rossato L, Ney B, Ourry A (2004) Modeling nitrogen uptake in oilseed rape cv capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data. Plant Physiology 134, 388–400.
Modeling nitrogen uptake in oilseed rape cv capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVansrs%3D&md5=a2825a222749148c3a090e52b4022eceCAS | 14671012PubMed |

Marschner H, Marschner P (2012) ‘Marschner’s mineral nutrition of higher plants.’ (Elsevier Academic Press: London)

NVT (2014) ‘National variety trial.’ Available at http://www.nvtonline.com.au/ [Accessed 9 December 2014].

Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant & Cell Physiology 44, 304–317.
Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVWit7w%3D&md5=f29e797521cc7dccc561a70bd50975c1CAS |

Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science 18, 459–467.
Post-embryonic root organogenesis in cereals: branching out from model plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWrsrg%3D&md5=3901b10d560544afff46147d4bc088cdCAS | 23727199PubMed |

Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedeleb F, Miller T (2007) Nitrate signaling and the two component high affinity uptake system in Arabidopsis. Plant Signaling & Behavior 2, 260–262.
Nitrate signaling and the two component high affinity uptake system in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Ortiz-Monasterio R JI, Sayre KD, Rajaram S, McMahon M (1997) Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science 37, 898–904.
Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates.Crossref | GoogleScholarGoogle Scholar |

Pang J, Palta JA, Rebetzke GJ, Milroy SP (2014) Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Functional Plant Biology 41, 215–222.
Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFOlsQ%3D%3D&md5=646f55ba206e9f1df7ccfe007ceb487bCAS |

Pearson CJ, Volk RJ, Jackson WA (1981) Daily changes in nitrate influx, efflux and metabolism in maize and pearl millet. Planta 152, 319–324.
Daily changes in nitrate influx, efflux and metabolism in maize and pearl millet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltFWrsbY%3D&md5=56e2ff1e2b3674341883985cbbc45373CAS | 24301026PubMed |

Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U (2010) Dichotomy in the NRT gene families of dicots and grass species. PLoS One 5, e15289
Dichotomy in the NRT gene families of dicots and grass species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKlur%2FP&md5=d9d891e0269a0cf9554c83695642905aCAS | 21151904PubMed |

Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). Journal of Plant Physiology 162, 507–515.
Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa).Crossref | GoogleScholarGoogle Scholar | 15940868PubMed |

Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America 103, 19206–19211.
The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChsrjO&md5=ff8207c95dc6f45c15a3274ffb4cbc83CAS | 17148611PubMed |

Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proceedings. Biological Sciences 266, 431–435.
Plant root proliferation in nitrogen-rich patches confers competitive advantage.Crossref | GoogleScholarGoogle Scholar |

Sadras VO, Lawson C (2013) Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy 46, 34–41.
Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVaktLs%3D&md5=25c6480b36830afa65c902431415e98bCAS |

Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990) Studies of the uptake of nitrate in barley: I. Kinetics of 13NO3 − influx. Plant Physiology 93, 1426–1432.
Studies of the uptake of nitrate in barley: I. Kinetics of 13NO3 influx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls12jtLc%3D&md5=b819d63aa4f737a54a4b3c1a7f9fff1aCAS | 16667635PubMed |

Van Ginkel M, Ortiz-Monasterio I, Trethowan R, Hernandez E (2001) Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica 119, 223–230.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3,
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFOjsr8%3D&md5=0b98ded2d720133f1ae70ec9dd01a652CAS | 12184808PubMed |

Wallace A (1989) Relationships among nitrogen, silicon, and heavy metal uptake by plants. Soil Science 147, 457–460.
Relationships among nitrogen, silicon, and heavy metal uptake by plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlehsL8%3D&md5=cd662de7504253438e9a7769ab7f7b40CAS |

Wang X, Wu P, Hu B, Chen Q (2002) Effect of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Botanica Sinica 44, 678–683.

Yong Z, Kotur Z, Glass ADM (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. The Plant Journal 63, 739–748.
Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qt7bO&md5=67190388a687409426c1d0178fc78020CAS | 20561257PubMed |

Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409.
An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVShtA%3D%3D&md5=ebaf4a2a90bd4b98c22f521e897ebd59CAS | 9430595PubMed |