Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Increasing nitrogen supply stimulates phosphorus acquisition mechanisms in the fynbos species Aspalathus linearis

Pravin M. Maistry A , A. Muthama Muasya A , Alex J. Valentine B and Samson B. M. Chimphango A C
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.

B Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.

C Corresponding author. Email: samson.chimphango@uct.ac.za

Functional Plant Biology 42(1) 52-62 https://doi.org/10.1071/FP14100
Submitted: 31 March 2014  Accepted: 2 July 2014   Published: 20 August 2014

Abstract

We investigated the physiological basis for tolerance of limiting P supply and for enhanced growth with simultaneous addition of N and P in Aspalathus linearis (Burm. f.) R. Dahlgren. It was hypothesised that increasing N supply would stimulate P acquisition mechanisms and enhance plant growth with high P supply. In sand, plants received 100 μM, 300 μM, 500 μM and 700 µM N at a low P level of 10 µM and a high P level of 100 µM. In solution, plants received 200 μM and 500 µM N at a low P level of 5 µM and a high P level of 15 µM. Cluster roots formed only in plants with low P supply. Roots showed greater citrate and malate production and phosphatase activity at 5 µM P than at 15 µM P. At 10 µM P, greater N supply enhanced cluster root formation to 60% of root biomass, and increased the phosphatase activity of noncluster roots and succinate release by both root types. At a high P supply of 15 µM, greater N supply stimulated phosphatase activity of roots by 50%, increasing P uptake and plant growth. With increased resource partitioning towards P acquisition due to greater P demand, A. linearis is tolerant of low P supply and highly responsive to combined addition of N and P.

Additional keywords: cluster roots, colimitation, organic acids, phosphatase.


References

Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants – an economic analogy. Annual Review of Ecology and Systematics 16, 363–392.

Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytologist 163, 177–185.
Quantification of ectomycorrhizal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster.Crossref | GoogleScholarGoogle Scholar |

Craine JM, Jackson RD (2010) Plant nitrogen and phosphorus limitation in 98 North American soils. Plant and Soil 334, 73–84.
Plant nitrogen and phosphorus limitation in 98 North American soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqur%2FM&md5=c9d160aaeb47102c4ed59bcbc70edb59CAS |

Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449, 1000–1001.
Nutrients in synergy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WgtrnN&md5=beaa51ebd3966ca3281e727a655d567aCAS | 17960233PubMed |

Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell & Environment 12, 285–292.
Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFertrY%3D&md5=802ab524d8a16fe3e8ed5aa49861ceabCAS |

Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Botanica Acta 108, 183–200.
Distribution and function of proteoid roots and other root clusters.Crossref | GoogleScholarGoogle Scholar |

Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10, 1135–1142.
Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar | 17922835PubMed |

Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist 186, 593–608.
Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVejtrc%3D&md5=09f8d454912a3dcd1ab38a4e53e42fe8CAS | 20298486PubMed |

Fageria VD (2001) Nutrient interactions in crop plants. Journal of Plant Nutrition 24, 1269–1290.
Nutrient interactions in crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslOhsb4%3D&md5=de59919c8bfe1310c7c6f542cdd2ea9bCAS |

Fujita Y, de Ruiter PC, Wassen MJ, Heil GW (2010) Time dependent, species-specific effects of N : P stoichiometry on grassland plant growth. Plant and Soil 334, 99–112.
Time dependent, species-specific effects of N : P stoichiometry on grassland plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqtbbN&md5=07d717063e9b162db78fc5529d7b01a0CAS |

Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology 41, 47–92.
Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFSgsw%3D%3D&md5=09fcd57b5c0c9f5a646a59c0ac7a633dCAS | 10500844PubMed |

Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant, Cell & Environment 22, 801–810.
Acid phosphatase activity in phosphorus-deficient white lupin roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFGnsr8%3D&md5=5d981b4a3b5159518097fbae2790ac58CAS |

Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytologist 164, 243–266.
N : P ratios in terrestrial plants: variation and functional significance.Crossref | GoogleScholarGoogle Scholar |

Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecology Letters 14, 852–862.
Nutrient co-limitation of primary producer communities.Crossref | GoogleScholarGoogle Scholar | 21749598PubMed |

Hawkins H-J, Wolf G, Stock WD (2005) Cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) take up glycine intact: an adaptive strategy to low mineral N in soils? Annals of Botany 96, 1275–1282.
Cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) take up glycine intact: an adaptive strategy to low mineral N in soils?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFOqsA%3D%3D&md5=110752ef0fd531449bc5726b2c69d16bCAS | 16223736PubMed |

Hawkins H-J, Hettasch H, Cramer MD (2007) Putting back what we take out, but by how much? Phosphorus and nitrogen additions to farmed Leucodendron ‘Safari Sunset’ and Leucospermum ‘Succession’ (Proteaceae). Scientia Horticulturae 111, 378–388.
Putting back what we take out, but by how much? Phosphorus and nitrogen additions to farmed Leucodendron ‘Safari Sunset’ and Leucospermum ‘Succession’ (Proteaceae).Crossref | GoogleScholarGoogle Scholar |

Hawkins H-J, Malgas R, Bienabe E (2011) Ecotypes of wild rooibos (Aspalathus linearis (Burm. F) Dahlg., Fabaceae) are ecologically distinct. South African Journal of Botany 77, 360–370.
Ecotypes of wild rooibos (Aspalathus linearis (Burm. F) Dahlg., Fabaceae) are ecologically distinct.Crossref | GoogleScholarGoogle Scholar |

Hills EJ, Sailsberry RL, Ulrich A, Sipitanos KM (1970) Effect of phosphorus on nitrate in sugar beet (Beta vulgaris L.). Agronomy Journal 62, 91–92.
Effect of phosphorus on nitrate in sugar beet (Beta vulgaris L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXnvVSgsw%3D%3D&md5=dc6f4074cbafc1368b42e13fcb035c87CAS |

Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173–195.
Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVWlsQ%3D%3D&md5=ce6da46d9b33513b53998edd9288daebCAS |

Houlton BZ, Wang Y-P, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330.
A unifying framework for dinitrogen fixation in the terrestrial biosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFCqs7w%3D&md5=d08b1d622d01136efd9b0ecf5fe0119dCAS | 18563086PubMed |

Kalra YP (1998) ‘Handbook of standard methods of plant analysis.’ (CRC Press: Boca Raton)

Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus). Plant, Cell & Environment 21, 467–478.
Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1elsrg%3D&md5=8623464f79c291f71385f2d7b44b91b0CAS |

Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98, 693–713.
Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits.Crossref | GoogleScholarGoogle Scholar | 16769731PubMed |

Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high species diversity on fertile soils is linked to functional diversity for nutritional strategies. Plant and Soil 334, 11–31.
Plant mineral nutrition in ancient landscapes: high species diversity on fertile soils is linked to functional diversity for nutritional strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqtbnJ&md5=9423b2456dc84e6317d6c91ec177d1d5CAS |

Lambers H, Finnegan PM, Laliberte E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiology 156, 1058–1066.
Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWlu74%3D&md5=581992ef1c008f08eac36c30d144c83fCAS | 21498583PubMed |

Lamont B (1972) The effect of soil nutrients on the production of proteoid roots by Hakea species. Australian Journal of Botany 20, 27–40.
The effect of soil nutrients on the production of proteoid roots by Hakea species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xlt1Ggs78%3D&md5=42fd5270c1438a6c200663748bc25812CAS |

Li H, Shen J, Zhang F, Tang C, Lambers H (2008) Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus? Functional Plant Biology 35, 328–336.
Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus? Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFOitr4%3D&md5=680ea0838e8dcf3e8983585b9985aaecCAS |

Maistry PM, Cramer MD, Chimphango SBM (2013) N and P colimitation of N2-fixing and N-supplied fynbos legumes from the Cape Floristic Region. Plant and Soil 373, 217–228.
N and P colimitation of N2-fixing and N-supplied fynbos legumes from the Cape Floristic Region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVyktbg%3D&md5=8d5faa6e065a498110552b7e4b02b046CAS |

Manning J, Goldblatt P (2012) ‘Plants of the Greater Cape Floristic Region 1: the Core Cape Flora, Strelitzia 29.’ (South African National Biodiversity Institute: Pretoria)

Matzek V, Vitousek PM (2009) N : P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth rate hypothesis. Ecology Letters 12, 765–771.
N : P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth rate hypothesis.Crossref | GoogleScholarGoogle Scholar | 19392715PubMed |

Mitchell DT, Brown G, Jongens-Roberts SM (1984) Variations of forms of phosphorus in the sandy soils of coastal fynbos, south-western Cape. Journal of Ecology 72, 575–584.
Variations of forms of phosphorus in the sandy soils of coastal fynbos, south-western Cape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXls12rsrg%3D&md5=4b96955db7801bca6dfa938de0bbf482CAS |

Morton JF (1983) Rooibos tea, Aspalathus linearis, a caffeineless, low-tannin beverage. Economic Botany 37, 164–173.
Rooibos tea, Aspalathus linearis, a caffeineless, low-tannin beverage.Crossref | GoogleScholarGoogle Scholar |

Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208, 373–382.
Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlOguro%3D&md5=b92e5ae65fdd4687d1cc1e641c52ce3eCAS |

Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Journal of Experimental Botany 52, 329–339.
The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVaju7w%3D&md5=5fd4d23e85171702855eb662937611e5CAS | 11283178PubMed |

Olander LP, Vitousek PM (2000) Regulation of soil phosphate and chitinase activity by soil N and P availability. Biogeochemistry 49, 175–191.
Regulation of soil phosphate and chitinase activity by soil N and P availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1yjt7Y%3D&md5=7ecbcd2cde6c0098f4177c93f48cdddcCAS |

Ostertag R (2010) Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil 334, 85–98.
Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqtbfP&md5=aeb7ca0b9acc81ed32e33b2f3065d387CAS |

Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KHM, Bolland MDA, Denton MD, Lambers H (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil 331, 241–255.
Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVOhs70%3D&md5=fcf4de64478557e4bd97a0fb34c87c05CAS |

Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany 60, 2665–2676.
Nitrogen affects cluster root formation and expression of putative peptide transporters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGit7w%3D&md5=d0b7ee5a554279c2f35b145bb1985d5fCAS | 19380419PubMed |

Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant and Soil 288, 127–139.
Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaksL7F&md5=8f46f67efde25328524e43d520c5efd6CAS |

Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA (2004) Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytologist 161, 279–290.
Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVWrsw%3D%3D&md5=e0caacf2f2bdb4e3bdd6170af964f72bCAS |

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193, 30–50.
Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVKgtr0%3D&md5=9f8ddd79215ab1893d8d3101b0ebc03bCAS | 22085245PubMed |

Power SC, Cramer MD, Verboom GA, Chimphango SBM (2010) Does phosphate acquisition constrain legume persistence in fynbos of the Cape Floristic Region? Plant and Soil 334, 33–46.
Does phosphate acquisition constrain legume persistence in fynbos of the Cape Floristic Region?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqur7F&md5=ca2d1482443670b06c7e17c9abb1509eCAS |

Power SC, Cramer MD, Verboom GA, Chimphango SBM (2011) Legume seeders of the Cape Floristic Region inhabit more fertile soils than congeneric resprouters – sometimes. Plant Ecology 212, 1979–1989.
Legume seeders of the Cape Floristic Region inhabit more fertile soils than congeneric resprouters – sometimes.Crossref | GoogleScholarGoogle Scholar |

Reddell P, Yun Y, Shipton WA (1997) Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Australian Journal of Botany 45, 41–51.
Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply.Crossref | GoogleScholarGoogle Scholar |

Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant, Cell & Environment 24, 891–904.
Exudation of carboxylates in Australian Proteaceae: chemical composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVKgtr4%3D&md5=71802d4264e9c1f1cd46fd5fc67a030aCAS |

Rufty TW, MacKown CT, Israel DW (1990) Phosphorus effects on assimilation of nitrate. Plant Physiology 94, 328–333.
Phosphorus effects on assimilation of nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlShtbs%3D&md5=8f4ee38ef06842a010e55a124b7d5e72CAS | 16667705PubMed |

Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52, 527–560.
Function and mechanism of organic anion exudation from plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWgsbg%3D&md5=f3bbe9fc79dd54049fa5ab71739e0dd9CAS | 11337408PubMed |

Ryan MH, Ehrenberg S, Bennett RG, Tibbett M (2009) Putting the P in Ptilotus: a phosphorus accumulating herb native to Australia. Annals of Botany 103, 901–911.
Putting the P in Ptilotus: a phosphorus accumulating herb native to Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Ghsrs%3D&md5=fb52facfcd17c9b81c73cbca7ae209b8CAS | 19213796PubMed |

Sas L, Rengel Z, Tang C (2002) The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus. Annals of Botany 89, 435–442.
The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslyntrY%3D&md5=2c12a55b52efa5b059a4bff7fdde972dCAS | 12096804PubMed |

Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant and Soil 274, 101–125.
Cluster roots: a curiosity in context.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiurfK&md5=eb43e398dba3e64f531f06aab1c04dcaCAS |

Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray G, Millar HA, Day DA, Lambers H (2004) Developmental physiology of cluster root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiology 135, 549–560.
Developmental physiology of cluster root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt12ms78%3D&md5=2a706b1b47fbb99382410e80a4cd6fc0CAS | 15122030PubMed |

Shane MW, Cramer MD, Lambers H (2008) Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth. Plant, Cell & Environment 31, 1825–1833.
Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1yqsQ%3D%3D&md5=28a66385441c348a3626aafa76b4ef56CAS |

Shaver GR, Melillo JM (1984) Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65, 1491–1510.
Nutrient budgets of marsh plants: efficiency concepts and relation to availability.Crossref | GoogleScholarGoogle Scholar |

Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990) Studies on the uptake of nitrate in barley. 1. Kinetics and 13NO3 ¯ influx. Plant Physiology 93, 1426–1432.
Studies on the uptake of nitrate in barley. 1. Kinetics and 13NO3 ¯ influx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls12jtLc%3D&md5=96b2ebf60c4811c694ee3b31361c909bCAS | 16667635PubMed |

Smith WH (1976) Character and significance of forest tree exudates. Ecology 57, 324–331.
Character and significance of forest tree exudates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksF2ltbg%3D&md5=8f8ef4228bbec707f40b9a302399d625CAS |

Smith FW, Jackson WA (1987) Nitrogen enhancement of phosphate transport in roots of Zea mays L. 1. Effects of ammonium and nitrate pretreatment. Plant Physiology 84, 1314–1318.
Nitrogen enhancement of phosphate transport in roots of Zea mays L. 1. Effects of ammonium and nitrate pretreatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslamtro%3D&md5=f28750b5db705b09a99de9d7ac81cd68CAS | 16665604PubMed |

Stock WD, Lewis OAM (1986) Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem. Journal of Ecology 74, 317–328.
Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem.Crossref | GoogleScholarGoogle Scholar |

Stock WD, Verboom GA (2012) Phylogenetic ecology of foliar N and P concentrations and N : P ratios across Mediterranean-type ecosystems. Global Ecology and Biogeography 21, 1147–1156.
Phylogenetic ecology of foliar N and P concentrations and N : P ratios across Mediterranean-type ecosystems.Crossref | GoogleScholarGoogle Scholar |

Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry 1, 301–307.
Use of p-nitrophenyl phosphate for assay of soil phosphatase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtFShu7Y%3D&md5=21933cb015547c4d39cc953e0dff7f82CAS |

Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Science and Plant Nutrition 37, 129–140.
Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVaitrY%3D&md5=0af090e95760762efabbe14e5b09ede3CAS |

Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils 5, 308–312.
Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVersLc%3D&md5=a61cd939c1777bd684e52e4f807dca9cCAS |

Thien SJ, McFee WW (1972) Effect of nitrogen on phosphorus transport systems in Zea mays L. Soil Science Society of America Journal 36, 617–620.
Effect of nitrogen on phosphorus transport systems in Zea mays L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkvVOjt7g%3D&md5=6667c35c7cf51dfd4e6811382c9ae184CAS |

Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82, 946–954.
Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests.Crossref | GoogleScholarGoogle Scholar |

Vitousek PM, Porder S, Houlton BZ, Chadwick A (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20, 5–15.
Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions.Crossref | GoogleScholarGoogle Scholar | 20349827PubMed |

Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology 127, 345–359.
Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCrtbo%3D&md5=1bc47a8c2a74a9bf9ca66d4694d52e8aCAS | 11553762PubMed |

Witkowski ETF, Mitchell DT (1987) Variations in soil phosphorus in the fynbos biome, South Africa. Journal of Ecology 75, 1159–1171.
Variations in soil phosphorus in the fynbos biome, South Africa.Crossref | GoogleScholarGoogle Scholar |