Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Seed storage albumins: biosynthesis, trafficking and structures

Joshua S. Mylne A D , Ikuko Hara-Nishimura B and K. Johan Rosengren C
+ Author Affiliations
- Author Affiliations

A The University of Western Australia, School of Chemistry and Biochemistry and ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.

B Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake cho Sakyo-ku, Kyoto, 606-8502, Japan.

C The University of Queensland, School of Biomedical Sciences, Brisbane, Qld 4072, Australia.

D Corresponding author. Email: joshua.mylne@uwa.edu.au

This review originates from the Peter Goldacre Award 2012 of the Australian Society of Plant Scientists that was received by the first author.

Functional Plant Biology 41(7) 671-677 https://doi.org/10.1071/FP14035
Submitted: 24 January 2014  Accepted: 24 March 2014   Published: 6 May 2014

Abstract

Seed storage albumins are water-soluble and highly abundant proteins that are broken-down during seed germination to provide nitrogen and sulfur for the developing seedling. During seed maturation these proteins are subject to post-translational modifications and trafficking before they are deposited in great quantity and with great stability in dedicated vacuoles. This review will cover the subcellular movement, biochemical processing and mature structures of seed storage napins.

Additional keywords: asparaginyl endo-peptidase, napin, seed storage protein, vacuolar processing enzyme, 2S albumin.


References

Alcocer MJC, Murtagh GJ, Bailey K, Dumoulin M, Sarabia Meseguer A, Parker MJ, Archer DB (2002) The disulphide mapping, folding and characterisation of recombinant Ber e 1, an allergenic protein, and SFA8, two sulphur-rich 2 S plant albumins. Journal of Molecular Biology 324, 165–175.
The disulphide mapping, folding and characterisation of recombinant Ber e 1, an allergenic protein, and SFA8, two sulphur-rich 2 S plant albumins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlWmsb8%3D&md5=cb669d8c1250f0f8b398325e1fcf5531CAS |

Allen R, Cohen E, Vonder Haar R, Adams C, Ma D, Nessler C, Thomas T (1987) Sequence and expression of a gene encoding an albumin storage protein in sunflower. Molecular & General Genetics 210, 211–218.
Sequence and expression of a gene encoding an albumin storage protein in sunflower.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVWiuro%3D&md5=b60102ad11e4f53bc96ae034056d8e00CAS |

Ericson ML, Rödin J, Lenman M, Glimelius K, Josefsson LG, Rask L (1986) Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. Journal of Biological Chemistry 261, 14 576–14 581.

Gruis DF, Selinger DA, Curran JM, Jung R (2002) Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. The Plant Cell 14, 2863–2882.
Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovF2qurc%3D&md5=ff8bedd63438ac0f0cd20951a27df19eCAS | 12417707PubMed |

Gruis D, Schulze J, Jung R (2004) Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases. The Plant Cell 16, 270–290.
Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVektg%3D%3D&md5=b03139f3dec21cd2b1aca261930d3a59CAS | 14688293PubMed |

Hara-Nishimura I, Nishimura M (1987) Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons. Plant Physiology 85, 440–445.
Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXptVCqsQ%3D%3D&md5=5c99410a9e21d58f73cef8a113141a90CAS | 16665717PubMed |

Hara-Nishimura I, Inoue K, Nishimura M (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Letters 294, 89–93.
A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVWmsLo%3D&md5=603a0192b6b6dd38a3fb6eae279ebd11CAS | 1743299PubMed |

Hara-Nishimura I, Takeuchi Y, Inoue K, Nishimura M (1993) Vesicle transport and processing of the precursor to 2S albumin in pumpkin. The Plant Journal 4, 793–800.
Vesicle transport and processing of the precursor to 2S albumin in pumpkin.Crossref | GoogleScholarGoogle Scholar |

Harley SM, Lord MJ (1985) In vitro endoproteolytic cleavage of castor bean lectin presursors. Plant Science 41, 111–116.
In vitro endoproteolytic cleavage of castor bean lectin presursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVKiu70%3D&md5=7ef5ad3856a31201ceb4d75671a4e688CAS |

Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305, 855–858.
A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Krsbw%3D&md5=22be6d427ca0d5a6939afe30c417c70aCAS | 15297671PubMed |

Heath J, Weldon R, Monnot C, Meinke D (1986) Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana. Planta 169, 304–312.
Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslaltw%3D%3D&md5=6cb2a7bba436a3f175521d91a2d2e742CAS | 24232640PubMed |

Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1997) An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. European Journal of Biochemistry 246, 133–141.
An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslSjtb8%3D&md5=c3fa8219a06397c4beddf5331aa93fa5CAS | 9210475PubMed |

Irwin S, Keen J, Findlay JC, Lord JM (1990) The Ricinus communis 2S albumin precursor: a single preproprotein may be processed into two different heterodimeric storage proteins. Molecular & General Genetics 222, 400–408.
The Ricinus communis 2S albumin precursor: a single preproprotein may be processed into two different heterodimeric storage proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls1Klsr0%3D&md5=5554d486f8b7e4472eb894f51bbb5bd0CAS |

Kortt AA, Caldwell JB, Lilley GG, Higgins TJV (1991) Amino acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). European Journal of Biochemistry 195, 329–334.
Amino acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Kqt7o%3D&md5=85e2aaf0231f869a27242589bcd452a9CAS | 1997318PubMed |

Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. Journal of Biological Chemistry 280, 32 914–32 920.
Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiurrN&md5=4a0bb841a2345a4a8d1d7c33cdd6040aCAS |

Lehmann K, Schweimer K, Reese G, Randow S, Suhr M, Becker W-M, Vieths S, Rösch P (2006) Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochemical Journal 395, 463–472.
Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlCgsLs%3D&md5=f7fff07e575780316e6b14bfa3ad74abCAS | 16372900PubMed |

Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I (2006) MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. The Plant Cell 18, 3535–3547.
MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVKru74%3D&md5=f3e8b58e11b3ba322acfee85c42dc3f9CAS | 17194767PubMed |

Li D-F, Jiang P, Zhu D-Y, Hu Y, Max M, Wang D-C (2008) Crystal structure of Mabinlin II: a novel structural type of sweet proteins and the main structural basis for its sweetness. Journal of Structural Biology 162, 50–62.
Crystal structure of Mabinlin II: a novel structural type of sweet proteins and the main structural basis for its sweetness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksleju7k%3D&md5=4193906a986ca8e3085991b9bf1accb3CAS | 18308584PubMed |

Li L, Shimada T, Takahashi H, Koumoto Y, Shirakawa M, Takagi J, Zhao X, Tu B, Jin H, Shen Z, Han B, Jia M, Kondo M, Nishimura M, Hara-Nishimura I (2013) MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana. The Plant Journal 76, 781–791.
MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGgsrvN&md5=ce7cf0c234a9ae185570c2b6ca534fdeCAS | 24118572PubMed |

Liu X, Maeda S, Hu Z, Aiuchi T, Nakaya K, Kurihara Y (1993) Purification, complete amino acid sequence and structural characterization of the heat-stable sweet protein, mabinlin II. European Journal of Biochemistry 211, 281–287.
Purification, complete amino acid sequence and structural characterization of the heat-stable sweet protein, mabinlin II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFWmtrc%3D&md5=e16f3909ee9fda77681bd5cd27b15cfaCAS | 8425538PubMed |

Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. Journal of Molecular Biology 290, 525–533.
High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFehsb0%3D&md5=61ff80e5f1c6a1a284a91526c7e5e8c7CAS | 10390350PubMed |

Min W, Jones DH (1994) In vitro splicing of concanavalin A is catalyzed by asparaginyl endopeptidase. Nature Structural & Molecular Biology 1, 502–504.
In vitro splicing of concanavalin A is catalyzed by asparaginyl endopeptidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVGhs70%3D&md5=a6ee57b1075a2d4b54953a8a47af1686CAS |

Moreno FJ, Clemente A (2008) 2S albumin storage proteins: what makes them food allergens? Open Biochemistry Journal 2, 16–28.
2S albumin storage proteins: what makes them food allergens?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsleht78%3D&md5=a5290e95b6bd5ab69e93baec2a935e6bCAS | 18949071PubMed |

Mylne JS, Colgrave ML, Daly NL, Chanson AH, Elliott AG, McCallum EJ, Jones A, Craik DJ (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nature Chemical Biology 7, 257–259.
Albumins and their processing machinery are hijacked for cyclic peptides in sunflower.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKrsrs%3D&md5=8f74c2813832dee47884851edb84752cCAS | 21423169PubMed |

Mylne JS, Chan LY, Chanson AH, Daly NL, Schaefer H, Bailey TL, Nguyencong P, Cascales L, Craik DJ (2012) Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis. The Plant Cell 24, 2765–2778.
Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlChsb%2FN&md5=5b8cb09e5790e6fd4794bd10837ef153CAS | 22822203PubMed |

Onda Y, Nagamine A, Sakurai M, Kumamaru T, Ogawa M, Kawagoe Y (2011) Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. The Plant Cell 23, 210–223.
Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFaluro%3D&md5=6e362b96158c207879550233a7474409CAS | 21278127PubMed |

Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. The Plant Cell 18, 2567–2581.
The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurvO&md5=c5063ff25239a342ba9e005aa03ec68dCAS | 17012602PubMed |

Paetzel M, Karla A, Strynadka NCJ, Dalbey RE (2002) Signal peptidases. Chemical Reviews 102, 4549–4580.
Signal peptidases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFSgu7k%3D&md5=0c586814e9b76a074664ff0f0a011009CAS | 12475201PubMed |

Pantoja-Uceda D, Bruix M, Giménez-Gallego G, Rico M, Santoro J (2003) Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis. Biochemistry 42, 13 839–13 847.
Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslKrtLs%3D&md5=8c2d321ba224475928242f84051856f2CAS |

Pantoja-Uceda D, Palomares O, Bruix M, Villalba M, Rodríguez R, Rico M, Santoro J (2004a) Solution structure and stability against digestion of rproBnIb, a recombinant 2S albumin from rapeseed: relationship to its allergenic properties. Biochemistry 43, 16 036–16 045.
Solution structure and stability against digestion of rproBnIb, a recombinant 2S albumin from rapeseed: relationship to its allergenic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWhsbrO&md5=26ee30b42846dc4ef55ca6711c6ff344CAS |

Pantoja-Uceda D, Shewry PR, Bruix M, Tatham AS, Santoro J, Rico M (2004b) Solution structure of a methionine-rich 2S albumin from sunflower seeds: relationship to its allergenic and emulsifying properties. Biochemistry 43, 6976–6986.
Solution structure of a methionine-rich 2S albumin from sunflower seeds: relationship to its allergenic and emulsifying properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslOitbs%3D&md5=3a5c41e4f6503e6365d72928692516b6CAS | 15170335PubMed |

Rico M, Bruix M, González C, Monsalve RI, Rodríguez R (1996) 1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein. Biochemistry 35, 15 672–15 682.
1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvVOisbo%3D&md5=3ff0df4c7b04632047a4ec7e5912d74dCAS |

Rundqvist L, Tengel T, Zdunek J, Björn E, Schleucher J, Alcocer MJC, Larsson G (2012) Solution structure, copper binding and backbone dynamics of recombinant Ber e 1 – the major allergen from brazil nut. PLoS ONE 7, e46435
Solution structure, copper binding and backbone dynamics of recombinant Ber e 1 – the major allergen from brazil nut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFalu7fL&md5=3b3893844e6f12b999b40d261eaeca9dCAS | 23056307PubMed |

Schilling S, Wasternack C, Demuth H-U (2008) Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biological Chemistry 389, 983–991.
Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Ohtbc%3D&md5=fe06a35e748c7abea0564b18ba831073CAS | 18979624PubMed |

Sharief FS, Li SS-L (1982) Amino acid sequence of small and large subunits of seed storage protein from Ricinus communis. Journal of Biological Chemistry 257, 14 753–14 759.

Shewry P, Pandya M (1999) The 2S albumin storage proteins. In ‘Seed proteins’. (Eds P Shewry, R Casey) pp. 563–586. (Kluwer: Dordrecht, The Netherlands)

Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. The Plant Cell 7, 945–956.

Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant & Cell Physiology 38, 1414–1420.
A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVem&md5=279dfae7c78a68d04828267df84b25b3CAS |

Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2003a) Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100, 16 095–16 100.
Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGjtQ%3D%3D&md5=a97e114931ad333f72874305ce30c9e8CAS |

Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M, Tabata S, Kato T, Shinozaki K, Seki M, Kobayashi M, Kondo M, Nishimura M, Hara-Nishimura I (2003b) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. Journal of Biological Chemistry 278, 32 292–32 299.
Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOmsbk%3D&md5=2f986a0b57b41798662af944d5a9a439CAS |

Shimada T, Koumoto Y, Li L, Yamazaki M, Kondo M, Nishimura M, Hara-Nishimura I (2006) AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins. Plant & Cell Physiology 47, 1187–1194.
AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgur7L&md5=1d3bc4015a575d0df1bb7c3ae71d6a54CAS |

Takagi J, Renna L, Takahashi H, Koumoto Y, Tamura K, Stefano G, Fukao Y, Kondo M, Nishimura M, Shimada T, Brandizzi F, Hara-Nishimura I (2013) MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis. The Plant Cell 25, 4658–4675.
MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVOqsrs%3D&md5=c5c8f7a84bebb20aa8567f89e14ce753CAS | 24280388PubMed |

Takahashi H, Tamura K, Takagi J, Koumoto Y, Hara-Nishimura I, Shimada T (2010) MAG4/Atp115 is a Golgi-localized tethering factor that mediates efficient anterograde transport in Arabidopsis. Plant & Cell Physiology 51, 1777–1787.
MAG4/Atp115 is a Golgi-localized tethering factor that mediates efficient anterograde transport in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrfK&md5=8bd936b5cb7a91794a8f361c4330ff18CAS |

Thoyts PJE, Napier JA, Millichip M, Stobart AK, Griffiths WT, Tatham AS, Shewry PR (1996) Characterization of a sunflower seed albumin which associates with oil bodies. Plant Science 118, 119–125.
Characterization of a sunflower seed albumin which associates with oil bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlSitbg%3D&md5=7cd6ec1a105e95a6047f034c56a09c0eCAS |

Yamada K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I (1999) Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme. Journal of Biological Chemistry 274, 2563–2570.
Multiple functional proteins are produced by cleaving Asn-Gln bonds of a single precursor by vacuolar processing enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXovVKjsQ%3D%3D&md5=2eb07b620a30ba63fe59d7ce1a3d43baCAS | 9891029PubMed |

Yamazaki M, Shimada T, Takahashi H, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2008) Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. Plant & Cell Physiology 49, 142–156.
Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVWltbc%3D&md5=be8dafabf09694579e91531a1323690dCAS |