Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Overexpression of a pepper CaERF5 gene in tobacco plants enhances resistance to Ralstonia solanacearum infection

Yan Lai A , Fengfeng Dang A , Jing Lin A , Lu Yu A , Jinhui Lin A , Yufen Lei A , Chengcong Chen A , Zhiqin Liu A , Ailian Qiu A , Shaoliang Mou A , Deyi Guan A B , Yang Wu C and Shuilin He A B D
+ Author Affiliations
- Author Affiliations

A Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.

B National Education Minster Key laboratory of Plant Genetic Improvement and Comprehensive Utilisation, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.

C Jinggangshan University, Jian, Jiangxi 343009, China.

D Corresponding author. Email: shlhe201304@aliyun.com

Functional Plant Biology 41(7) 758-767 https://doi.org/10.1071/FP13305
Submitted: 19 October 2013  Accepted: 13 January 2014   Published: 17 February 2014

Abstract

ETHYLENE RESPONSE FACTORs (ERF) transcription factors (TFs) constitute a large transcriptional regulator family belonging to the AP2/ERF superfamily and are implicated in a range of biological processes. However, the specific roles of individual ERF family members in biotic or abiotic stress responses and the underlying molecular mechanism still need to be elucidated. In the present study, a cDNA encoding a member of ethylene response factor (ERF) transcription factor, CaERF5, was isolated from pepper. Sequence analysis showed that CaERF5 contains a typical 59 amino acid AP2/ERF DNA-binding domain, two highly conserved amino acid residues (14th alanine (A) and 19th aspartic acid (D)), a putative nuclear localisation signal (NLS), a CMIX-2 motif in the N-terminal region and two putative MAP kinase phosphorylation site CMIX-5 and CMIX-6 motifs. It belongs to group IXb of the ERF subfamily. A CaERF5-green fluorescence protein (GFP) fusion transiently expressed in onion epidermal cells localised to the nucleus. CaERF5 transcripts were induced by Ralstonia solanacearum infection, salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH) treatments. Constitutive expression of the CaERF5 gene in tobacco plants upregulated transcript levels of a set of defence- related genes and enhanced resistance to R. solanacearum infection. Our results suggest that CaERF5 acts as a positive regulator in plant resistance to R. solanacearum infection and show that overexpression of this transcription factor can be used as a tool to enhance disease resistance in crop species.

Additional keywords: disease resistance, ethylene response factor, pepper.


References

Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. The Plant Cell 9, 1573–1584.

Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 1194–1197.
Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvivFarug%3D%3D&md5=d5c49712e8b39217874fd156c65f5e7aCAS | 17776411PubMed |

Chen N, Goodwin PH, Hsiang T (2003) The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. Journal of Experimental Botany 54, 2449–2456.
The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVertbs%3D&md5=205d838d8a57f772ec0fcf97f4ae1913CAS | 14565949PubMed |

Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell & Environment 36, 757–774.
CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1eks7w%3D&md5=198070d6432a66100662e6ba4b9c2b79CAS |

De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions 18, 923–937.
Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFGju7c%3D&md5=fe794e9511d3fd3eb2bcbeccc48ce055CAS | 16167763PubMed |

Deng S, Yu M, Wang Y, Jia Q, Lin L, Dong H (2010) The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBS Journal 277, 5097–5111.
The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOmsbzJ&md5=c4fe13224c5b6a4b1336e177e29842cbCAS | 21073656PubMed |

Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science 10, 71–78.
Regulation of the Arabidopsis defense transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlajtrk%3D&md5=f37226497aeb5b25447b704bab171a69CAS | 15708344PubMed |

Fischer U, Droge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant-Microbe Interactions 17, 1162–1171.
Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVaru7s%3D&md5=2ec7a9efc0a63d3fa6e6ec6110fadbbeCAS | 15497409PubMed |

Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant Cell 12, 393–404.

Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell 14, 817–831.
Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWksbY%3D&md5=7b6739b8ff946880bba33a16b29e4030CAS | 11971137PubMed |

Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology 7, 465–471.
Regulation of disease resistance pathways by AP2/ERF transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVWhurg%3D&md5=361d7a29bf8629d4ee331b9d35471acbCAS | 15231271PubMed |

Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicum annum) genes under cold stress conditions. Journal of Biosciences 30, 657–667.
Expression profiles of hot pepper (Capsicum annum) genes under cold stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1yhtg%3D%3D&md5=a8b1872f518dff153137ed7c2b89ca58CAS | 16388140PubMed |

Jones JD, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
The plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbzO&md5=8a1f02ea1139b0bddc66ab20ace00b7aCAS | 17108957PubMed |

Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225, 575–588.
The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yhtro%3D&md5=444ed984a98d5a853a32623a5347520eCAS | 16937017PubMed |

Kim SY, Kim YC, Lee JH, Oh SK, Chung E, Lee S, Lee YH, Choi D, Park JM (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochimica et Biophysica Acta 1729, 141–146.
Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFaltL8%3D&md5=229c060770328352eb5ff98ef86373afCAS | 15978683PubMed |

Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. The Plant Cell 12, 2339–2350.

Kwon H-B, Hwang E-W, Cheong J-J (2009) Transgenic expression of an ethylene responsive element binding protein of Capsicum annuum (CaEREBP-C4) in tobacco confers cold tolerance. Journal of the Korean Society for Applied Biological Chemistry 52, 405–411.
Transgenic expression of an ethylene responsive element binding protein of Capsicum annuum (CaEREBP-C4) in tobacco confers cold tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFemsbbM&md5=ccdf792aa757e7b856dcbf69840e6446CAS |

Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M, Chen C, Qi A, Liu Z, Guan D, Mou S, Qiu A, He S (2013) Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiology and Biochemistry 62, 70–78.
Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrsLjN&md5=7d8bf8a7ec8dd35043d08e7c5ffb6277CAS | 23201563PubMed |

Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Molecular Biology 55, 61–81.
The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSisLbK&md5=19d96746215a0c52a892bee9a73dd882CAS | 15604665PubMed |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ΔΔCT) Method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ΔΔCT) Method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=bd84bb918d7f9eebed3fb6a0ab2babdbCAS | 11846609PubMed |

Maleck K, Neuenschwander U, Cade RM, Dietrich RA, Dangl JL, Ryals JA (2002) Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants. Genetics 160, 1661–1671.

Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology 8, 409–414.
The role of abscisic acid in plant-pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFGgtrY%3D&md5=46297958532fddf5b9a4dc986281f529CAS | 15939661PubMed |

Munroe DJ, Loebbert R, Bric E, Whitton T, Prawitt D, Vu D, Buckler A, Winterpacht A, Zabel B, Housman DE (1995) Systematic screening of an arrayed cDNA library by PCR. Proceedings of the National Academy of Sciences of the United States of America 92, 2209–2213.
Systematic screening of an arrayed cDNA library by PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVCqtLc%3D&md5=4cb0a5b9b985c038d9f0768c6ab4fc6aCAS | 7892249PubMed |

Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140, 411–432.
Genome-wide analysis of the ERF gene family in Arabidopsis and rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2itLk%3D&md5=943a477b22fb02f5adbab311dda3d3e8CAS | 16407444PubMed |

Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 94, 7076–7081.
The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktF2qsb4%3D&md5=ff10da677dca3c8a5c805cecc2b9b32dCAS | 9192694PubMed |

Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5, 308–316.
Networking by small-molecule hormones in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ktL4%3D&md5=2358af57870c7a0dd1967dd291bf06d3CAS | 19377457PubMed |

Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology 49, 317–343.
Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOhtrjI&md5=8a9c303ff670e7ab65bf72e359ac3ef7CAS | 21663438PubMed |

Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290, 998–1009.
DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVyquw%3D%3D&md5=0cd859979045b9a7454b1b53a30b8e82CAS | 11798174PubMed |

Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 5, 430–436.
Transcription factors in plant defense and stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGjtbw%3D&md5=531842ec85eaa9e669147de4557b5fa4CAS | 12183182PubMed |

Sohn SI, Kim YH, Kim BR, Lee SY, Lim CK, Hur JH, Lee JY (2007) Transgenic tobacco expressing the hrpN(EP) gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea. Molecules and Cells 24, 232–239.

Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell 15, 760–770.
NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVektb0%3D&md5=68542829e6ba0d52e231185358aca551CAS | 12615947PubMed |

Takahashi Y, Nagata T (1992) parB: an auxin-regulated gene encoding glutathione S-transferase. Proceedings of the National Academy of Sciences of the United States of America 89, 56–59.
parB: an auxin-regulated gene encoding glutathione S-transferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1Cjt78%3D&md5=714560df5916dac76cbc6d04b51d1a05CAS | 1729717PubMed |

Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology 13, 459–465.
Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Ojsrk%3D&md5=0b0d4baa979443efa25ab8a96ae57b87CAS | 20471306PubMed |

Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F (2009) Network properties of robust immunity in plants. PLOS Genetics 5, e1000772
Network properties of robust immunity in plants.Crossref | GoogleScholarGoogle Scholar | 20011122PubMed |

Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47, 177–206.
Salicylic acid, a multifaceted hormone to combat disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gjt73P&md5=6911ea93f60e9a3f9927f034ad57c76eCAS | 19400653PubMed |

Wang Y, Zhang S (2008) High frequency transformation of the industrial erythromycin-producing bacterium Saccharopolyspora erythraea. Biotechnology Letters 30, 357–361.
High frequency transformation of the industrial erythromycin-producing bacterium Saccharopolyspora erythraea.Crossref | GoogleScholarGoogle Scholar | 17922209PubMed |

Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology 65, 719–732.
Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCntLjM&md5=759d0c25301ae8fa3a7273e50fc243caCAS | 17874224PubMed |

Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology 53, 570–585.
Functions and application of the AP2/ERF transcription factor family in crop improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWmsrvI&md5=2d10ead28aa9da870b9a3fd30279a2eeCAS | 21676172PubMed |

Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiology 136, 2862–2874.
The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOqs78%3D&md5=9ed236a0b6dca94ae0db87539af8fbbcCAS | 15347795PubMed |

Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R (2004) Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Molecular Biology 55, 825–834.

Zhang H, Li W, Chen J, Yang Y, Zhang Z, Wang XC, Huang R (2007) Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Molecular Biology 63, 63–71.
Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12gs7bI&md5=90ccbfdd46cf20b0f0ae228894ba5ff4CAS | 17160455PubMed |

Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany 60, 3781–3796.
Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ks7zL&md5=55bc05dff4d3ae26754b769bb5be8650CAS | 19602544PubMed |

Zhou J, Zhang H, Yang Y, Zhang Z, Hu X, Chen J, Wang XC, Huang R (2008) Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. Journal of Experimental Botany 59, 645–652.
Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamu74%3D&md5=607fb285c4b67be3c4a9a329b460878eCAS | 18252700PubMed |