Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Physiological perspectives of reduced tillering and stunting in the tiller inhibition (tin) mutant of wheat

Tesfamichael H. Kebrom A C and Richard A. Richards B
+ Author Affiliations
- Author Affiliations

A Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.

B CSIRO, Division of Plant Industry, Canberra, ACT 2601, Australia.

C Corresponding author. Email: tesfamichael.kebrom@ag.tamu.edu

Functional Plant Biology 40(10) 977-985 https://doi.org/10.1071/FP13034
Submitted: 16 February 2013  Accepted: 17 May 2013   Published: 2 July 2013

Abstract

The number of tillers established in cereal crops far exceeds the number that end up being grain bearing at maturity. Improving the economy in tillering has been proposed to improve cereal yields in both favourable and unfavourable environments. The tiller inhibition mutant (tin) is potentially useful for breeding varieties with a greater economy of tillering. However, its tendency to stunting under long day and low temperatures has limited its use. Recently, the inhibition of tillering in tin has been linked to precocious development of solid basal internodes that compete for sucrose and possibly other resources with the growing tiller buds leading to their developmental arrest. Although the physiological basis of stunting in tin is unknown, both inhibition of tillering and stunting begin during the transition from vegetative to reproductive phase indicating a common physiological basis for both. In this review, we provide overall perspectives for the physiological basis of tiller inhibition and stunting in tin and suggest the direction of research in the future.


References

Atsmon D, Jacobs E (1977) Newly bred gigas form of bread wheat (Triticum aestivum L.) – morphological features and thermo-photoperiodic responses. Crop Science 17, 31–35.
Newly bred gigas form of bread wheat (Triticum aestivum L.) – morphological features and thermo-photoperiodic responses.Crossref | GoogleScholarGoogle Scholar |

Atsmon D, Bush MG, Evans LT (1986a) Stunting in gigas wheat as influenced by temperature and daylength. Australian Journal of Plant Physiology 13, 381–389.
Stunting in gigas wheat as influenced by temperature and daylength.Crossref | GoogleScholarGoogle Scholar |

Atsmon D, Bush MG, Evans LT (1986b) Effects of environmental conditions on expression of the gigas characters in wheat. Australian Journal of Plant Physiology 13, 365–379.
Effects of environmental conditions on expression of the gigas characters in wheat.Crossref | GoogleScholarGoogle Scholar |

Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiology 160, 1698–1709.
Waterproofing crops: effective flooding survival strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmt73E&md5=1d1f38c7ac45f1036e1cf98fb4f0c032CAS | 23093359PubMed |

Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell 12, 1103–1115.

Becraft PW, Freeling M (1994) Genetic analysis of rough sheath1 developmental mutants of maize. Genetics 136, 295–311.

Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW (2001) The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. The Plant Cell 13, 2455–2470.

Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiology 151, 985–990.
Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsb3K&md5=8a8bb02cb35ec68ff439c552b183e080CAS | 19767387PubMed |

Blackman BK, Scascitelli M, Kane NC, Luton HH, Rasmussen DA, Bye RA, Lentz DL, Rieseberg LH (2011) Sunflower domestication alleles support single domestication center in eastern North America. Proceedings of the National Academy of Sciences of the United States of America 108, 14360–14365.
Sunflower domestication alleles support single domestication center in eastern North America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFamsrzF&md5=89f1fa02e2b52e7aa4fbe1f9c7268088CAS | 21844335PubMed |

Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. The Plant Cell 21, 1647–1658.
The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFOksrg%3D&md5=5293f7efc93630d718af4cd643ba29c6CAS | 19567707PubMed |

Christopher DA, Atsmon D, Feldman M (1985) Mode of inheritance and chromosomal allocation of stunting genes in common wheat. Crop Science 25, 147–151.
Mode of inheritance and chromosomal allocation of stunting genes in common wheat.Crossref | GoogleScholarGoogle Scholar |

Cole M, Nolte C, Werr W (2006) Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Research 34, 1281–1292.
Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOqu7g%3D&md5=51bd7a53c32ec604c7b6b961a15e65a1CAS | 16513846PubMed |

Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theoretical and Applied Genetics 121, 705–715.
The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt12msbc%3D&md5=8c569b18ee77f15fab4911d0541e4832CAS | 20407739PubMed |

Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127, 1309–1321.
The molecular genetics of crop domestication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVyluw%3D%3D&md5=d2056da67c14c8e2f0fa61ed67422ae0CAS | 17190597PubMed |

Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nature Reviews. Molecular Cell Biology 12, 211–221.
Signal integration in the control of shoot branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Cqsb8%3D&md5=1f48781dcb00a3f16837bb933a336073CAS | 21427763PubMed |

Donald CM (1968) Breeding of crop ideotypes. Euphytica 17, 385–403.
Breeding of crop ideotypes.Crossref | GoogleScholarGoogle Scholar |

Donald CM (1979) Barley breeding program based on an ideotype. Journal of Agricultural Science 93, 261–269.
Barley breeding program based on an ideotype.Crossref | GoogleScholarGoogle Scholar |

Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD (2002) KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. The Plant Cell 14, 547–558.
KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVegt7s%3D&md5=e58f27e2314c229c8a606ca35245ee4dCAS | 11910003PubMed |

Duggan BL, Richards RA, Tsuyuzaki H (2002) Environmental effects on stunting and the expression of a tiller inhibition (tin) gene in wheat. Functional Plant Biology 29, 45–53.
Environmental effects on stunting and the expression of a tiller inhibition (tin) gene in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVCiu7w%3D&md5=0579c1574314c7495826042869be2aa5CAS |

Duggan BL, Richards RA, van Herwaarden AF, Fettell NA (2005a) Agronomic evaluation of a tiller inhibition gene (tin) in wheat. I. Effect on yield, yield components, and grain protein. Australian Journal of Agricultural Research 56, 169–178.
Agronomic evaluation of a tiller inhibition gene (tin) in wheat. I. Effect on yield, yield components, and grain protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFyku7g%3D&md5=840891d9bcbfb02cc98d99dd19e26686CAS |

Duggan BL, Richards RA, van Herwaarden AF (2005b) Agronomic evaluation of a tiller inhibition gene (tin) in wheat. II. Growth and partitioning of assimilate. Australian Journal of Agricultural Research 56, 179–186.
Agronomic evaluation of a tiller inhibition gene (tin) in wheat. II. Growth and partitioning of assimilate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFyku7o%3D&md5=d1e773a01cf9d8e01f3a762952ca4b32CAS |

Evans LT (1964) Reproduction. In ‘Grasses and grasslands.’ (Ed. C Barnard) pp. 126–153. (Macmillan: London)

Fournier C, Andrieu B (2000) Dynamics of the elongation of internodes in maize (Zea mays L.): analysis of phases of elongation and their relationships to phytomer development. Annals of Botany 86, 551–563.
Dynamics of the elongation of internodes in maize (Zea mays L.): analysis of phases of elongation and their relationships to phytomer development.Crossref | GoogleScholarGoogle Scholar |

Gomez-Mena C, Sablowski R (2008) ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. The Plant Cell 20, 2059–2072.
ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ClsbzE&md5=a38017be90dcf8b120fdd81018501c7fCAS | 18757555PubMed |

Ha CM, Jun JH, Fletcher JC (2010) Shoot apical meristem form and function. Plant Development 91, 103–140.
Shoot apical meristem form and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOgu7rP&md5=63dce353a94fd8d2821d8d993a241c33CAS |

Hamant O, Pautot V (2010) Plant development: A TALE story. Comptes Rendus Biologies 333, 371–381.
Plant development: A TALE story.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlCqsLk%3D&md5=0468bbc71ad0139e32db367ef84108f9CAS | 20371112PubMed |

Hamant O, Nogue F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V (2002) The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiology 130, 657–665.
The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVKnt7g%3D&md5=b4865badafaa0aba683e2dd4301c54b4CAS | 12376633PubMed |

Hay RKM (1986) Sowing date and the relationships between plant and apex development in winter cereals. Field Crops Research 14, 321–337.
Sowing date and the relationships between plant and apex development in winter cereals.Crossref | GoogleScholarGoogle Scholar |

Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137, 3153–3165.
KNOX genes: versatile regulators of plant development and diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgurrI&md5=12a653261c13770b2ed12515faceef5bCAS | 20823061PubMed |

Hermsen JGT (1967) Hybrid dwarfness in wheat. Euphytica 16, 134–162.
Hybrid dwarfness in wheat.Crossref | GoogleScholarGoogle Scholar |

Inbal E, Atsmon D (1983) Morphological, physiological and genetic aspects of stunting expression in the iniculm ‘gigas’ wheat (Triticum aestivum L.). In ‘Proceedings of the 6th international wheat genetics symposium’. (Ed. S. Sakamoto) pp. 439–445. (Kyoto, Japan)

Innes P, Blackwell RD (1981) The effect of drought on the water-use and yield of 2 spring wheat genotypes. The Journal of Agricultural Science 96, 603–610.
The effect of drought on the water-use and yield of 2 spring wheat genotypes.Crossref | GoogleScholarGoogle Scholar |

Islam TMT, Sedgley RH (1981) Evidence for a uniculm effect in spring wheat (Triticum aestivum L.) in a mediterranean environment. Euphytica 30, 277–282.
Evidence for a uniculm effect in spring wheat (Triticum aestivum L.) in a mediterranean environment.Crossref | GoogleScholarGoogle Scholar |

Jacqmard A, Gadisseur I, Bernier G (2003) Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Annals of Botany 91, 571–576.
Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyitrs%3D&md5=6621c7881bb4c11cd1165ecfadf9d9d1CAS | 12646501PubMed |

Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology 15, 1560–1565.
KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslyitL8%3D&md5=0b022cbcd7ce7caea065b9e0a8038443CAS | 16139211PubMed |

Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiology 160, 308–318.
Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOmtLzK&md5=f2521d090cecc19582564f506765ec32CAS | 22791303PubMed |

Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends in Plant Science 18, 41–48.
Grasses provide new insights into regulation of shoot branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSjtg%3D%3D&md5=7fb31ea51d174a49a26a0f8185c2df60CAS | 22858267PubMed |

Kirby EJM (1988) Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crops Research 18, 127–140.
Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis.Crossref | GoogleScholarGoogle Scholar |

Luo AD, Qian Q, Yin HF, Liu XQ, Yin CX, Lan Y, Tang JY, Tang ZS, Cao SY, Wang XJ, Xia K, Fu XD, Luo D, Chu CC (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant & Cell Physiology 47, 181–191.
EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisVWrtbc%3D&md5=c4a39d3005ae0cd1bc08ef467e3f43e3CAS |

McMaster GS (1997) Phenology, development, and growth of the wheat (Triticum aestivum L.) shoot apex: a review. In ‘Advances in agronomy. Vol. 59’. (Ed. DL Sparks) pp. 63–118. (Elsevier Academic Press: San Diego, CA)

McMaster GS (2005) Phytomers, phyllochrons, phenology and temperate cereal development. Journal of Agricultural Science 143, 137–150.
Phytomers, phyllochrons, phenology and temperate cereal development.Crossref | GoogleScholarGoogle Scholar |

Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes & Development 17, 2088–2093.
The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFeru7Y%3D&md5=101b31a9498a4b7cb78fdcf4cc94bb6aCAS |

Mitchell JH, Chapman SC, Rebetzke GJ, Bonnett DG, Fukai S (2012) Evaluation of a reduced-tillering (tin) gene in wheat lines grown across different production environments. Crop and Pasture Science 63, 128–141.
Evaluation of a reduced-tillering (tin) gene in wheat lines grown across different production environments.Crossref | GoogleScholarGoogle Scholar |

Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi S (2011) Characterization of wheat Bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm. BMC Plant Biology 11, 2
Characterization of wheat Bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVOjtQ%3D%3D&md5=fa8defab2bb81d7ea3997a6ab7dd2974CAS | 21205321PubMed |

Morimoto R, Nishioka E, Murai K, Takumi S (2009) Functional conservation of wheat orthologs of maize rough sheath1 and rough sheath2 genes. Plant Molecular Biology 69, 273–285.
Functional conservation of wheat orthologs of maize rough sheath1 and rough sheath2 genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyjsA%3D%3D&md5=28dabae8507dec8f9d4bb6aea54475cbCAS | 18974935PubMed |

Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Annals of Botany 107, 1203–1212.
Auxin, cytokinin and the control of shoot branching.Crossref | GoogleScholarGoogle Scholar | 21504914PubMed |

Nagai K, Hattori Y, Ashikari M (2010) Stunt or elongate? Two opposite strategies by which rice adapts to floods. Journal of Plant Research 123, 303–309.
Stunt or elongate? Two opposite strategies by which rice adapts to floods.Crossref | GoogleScholarGoogle Scholar | 20354754PubMed |

Osnato M, Stile MR, Wang YM, Meynard D, Curiale S, Guiderdoni E, Liu YX, Horner DS, Ouwerkerk PBF, Pozzi C, Muller KJ, Salamini F, Rossini L (2010) Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. Plant Physiology 154, 1616–1632.
Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2jsbnK&md5=744cf43627a66d99145ee13f5b09ac11CAS | 20921155PubMed |

Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends in Plant Science 11, 176–183.
The Janus face of ethylene: growth inhibition and stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGnsLo%3D&md5=b8a80a0eb14203e41129492c96cc5e3fCAS | 16531097PubMed |

Richards RA (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Australian Journal of Agricultural Research 39, 749–757.
A tiller inhibitor gene in wheat and its effect on plant growth.Crossref | GoogleScholarGoogle Scholar |

Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science 42, 111–121.
Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals.Crossref | GoogleScholarGoogle Scholar | 11756261PubMed |

Richards RA, Watt M, Rebetzke GJ (2007) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154, 409–425.
Physiological traits and cereal germplasm for sustainable agricultural systems.Crossref | GoogleScholarGoogle Scholar |

Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C, Perre P, Cabane M (2012) Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula × alba). Journal of Experimental Botany 63, 4291–4301.
Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula × alba).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSlsLjJ&md5=e0380eb9c644fb573e77f52daa36b9d6CAS | 22553285PubMed |

Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany 56, 1651–1663.
Light, the circadian clock, and sugar perception in the control of lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktl2qurs%3D&md5=d064dce3d52ed375e920a5377aaa8b67CAS | 15878986PubMed |

Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiology 125, 1508–1516.
Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWrur8%3D&md5=fab705d95ef3e75173fa9dfb9c433156CAS | 11244129PubMed |

Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO Journal 18, 992–1002.
Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1ajsb4%3D&md5=78385d119f96f364a021ba59408960e3CAS | 10022841PubMed |

Schnyder H (1993) The role of carbohydrate storage and redistribution in the source–sink relations of wheat and barley during grain filling – a review. New Phytologist 123, 233–245.
The role of carbohydrate storage and redistribution in the source–sink relations of wheat and barley during grain filling – a review.Crossref | GoogleScholarGoogle Scholar |

Skoog F, Thimann KV (1934) Further experiments on the inhibition of the development of the development of lateral buds by growth hormone. Proceedings of the National Academy of Sciences of the United States of America 20, 480–485.
Further experiments on the inhibition of the development of the development of lateral buds by growth hormone.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zhvVejsw%3D%3D&md5=952c5ae634da4fa33976a832019b44fbCAS | 16577622PubMed |

Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. The Plant Cell 15, 1717–1727.
The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1WlsL0%3D&md5=7d181ff9a405dfccf300807771252328CAS |

Soucek P, Klima P, Rekova A, Brzobohaty B (2007) Involvement of hormones and KNOXI genes in early Arabidopsis seedling development. Journal of Experimental Botany 58, 3797–3810.
Involvement of hormones and KNOXI genes in early Arabidopsis seedling development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhurjN&md5=234bf093387c802b4936243a22602f73CAS | 17951601PubMed |

Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theoretical and Applied Genetics 109, 1303–1310.
Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKqurk%3D&md5=3282fc2301435cf146cbe3d277d2a0c9CAS | 15448895PubMed |

Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. Journal of Experimental Botany 61, 2889–2903.
The phytohormone signal network regulating elongation growth during shade avoidance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWkt7o%3D&md5=56a4aa0eceb8cadc218cad8e09ceba41CAS | 20501746PubMed |

Takumi S, Kosugi T, Murai K, Mori N, Nakamura C (2000) Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene 249, 171–181.
Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVeltb4%3D&md5=dc0f1e3a6e7d39b0a20bd54201e5dbc0CAS | 10831851PubMed |

Tomar SMS, Vinod , Singh B (2007) Genetic analysis of apical lethality in Triticum aestivum L. Euphytica 156, 425–431.
Genetic analysis of apical lethality in Triticum aestivum L.Crossref | GoogleScholarGoogle Scholar |

Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 99, 4730–4735.
The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSgs7k%3D&md5=f803b3a6545bbcb3295ed7924bb6053dCAS | 11917137PubMed |