Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Characterisation of DGAT1 and DGAT2 from Jatropha curcas and their functions in storage lipid biosynthesis

Ronghua Xu A , Tianquan Yang A B , Ruling Wang A and Aizhong Liu A C D
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650 223, China.

B The Graduate University of Chinese Academy of Sciences, Beijing 100 049, China.

C Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650 204, China.

D Corresponding author. Email: liuaizhong@mail.kib.ac.cn

Functional Plant Biology 41(3) 321-329 https://doi.org/10.1071/FP12388
Submitted: 7 January 2013  Accepted: 1 October 2013   Published: 19 November 2013

Abstract

Diacylglycerol acyltransferases (DGATs) catalyse the final step of triacylglycerol (TAG) biosynthesis of the Kennedy pathway, and play a critical role during TAG accumulation in developing oleaginous seeds. In this study, the molecular cloning and characterisation of two DGAT genes, JcDGAT1 and JcDGAT2, from jatropha (Jatropha curcas L., a potential biodiesel plant) is presented. Using heterogonous overexpression techniques, both JcDGAT1 and JcDGAT2 were able to restore TAG biosynthesis in a yeast mutant H1246 strain, and enhance the quantity of TAG biosynthesis by 16.6 and 14.3%, respectively, in strain INVSc1. In transgenic tobacco, overexpression of JcDGAT1 and JcDGAT2 resulted in an increase in seed oil content of, respectively, 32.8 and 31.8%. Further, the functional divergence of JcDGAT1 and JcDGAT2 in TAG biosynthesis was demonstrated by comparing the fatty acid compositions in both the transgenic yeast and tobacco systems. In particular, JcDGAT2 incorporated a 2.5-fold higher linoleic acid content into TAG than JcDGAT1 in transgenic yeast and exhibited a significant linoleic acid substrate preference in both yeast and tobacco. This study provides new insights in understanding the molecular mechanisms of DGAT genes underlying the biosynthesis of linoleic acids and TAG in plants.

Additional keywords: diacylglycerol acyltransferase, fatty acid composition, oil content, triacylglycerols.


References

Abdulla R, Chan ES, Ravindra P (2011) Biodiesel production from Jatropha curcas: a critical review. Critical Reviews in Biotechnology 31, 53–64.
Biodiesel production from Jatropha curcas: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVOisLs%3D&md5=07f345f756499ea26e7d7066914d8632CAS | 20572796PubMed |

Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P (2011) The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. Journal of Experimental Botany 62, 521–532.
The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyrsbrP&md5=4b2239f16d86f13db23bd358b6f9d4e7CAS | 20870930PubMed |

Burgal J, Shockey J, Lu CF, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnology Journal 6, 819–831.
Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1entbbO&md5=6aa480f7ac74ab2ea0c6bc8e8a6ccc40CAS | 18643899PubMed |

Giannoulia K, Haralampidis K, Poghosyan Z, Murphy DJ, Hatzopoulos P (2000) Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues. Biochemical Society Transactions 28, 695–697.
Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVGqsrw%3D&md5=e7bf03dc5882271fe6ed9d77d215888eCAS | 11171174PubMed |

He XH, Turner C, Chen GQ, Lin JT, McKeon TA (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39, 311–318.
Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWmtbk%3D&md5=82da96b9a0b21756f360d92581ffc009CAS |

Hernández ML, Whitehead L, He Z, Gazda V, Gilday A, Kozhevnikova E, Vaistij FE, Larson TR, Graham IA (2012) A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. Plant Physiology 160, 215–225.
A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants.Crossref | GoogleScholarGoogle Scholar | 22760209PubMed |

Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231.
A simple and general method for transferring genes into plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFSjsLc%3D&md5=c4f494abedf9a1288b8c22c9f049cacbCAS |

Izard J, Limberger RJ (2003) Rapid screening method for quantitation of bacterial cell lipids from whole cells. Journal of Microbiological Methods 55, 411–418.
Rapid screening method for quantitation of bacterial cell lipids from whole cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns12ls70%3D&md5=06a74092ce1cd447265a3fddd16f0632CAS | 14529962PubMed |

Kroon JTM, Wei WX, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67, 2541–2549.
Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Sjs73M&md5=223a0e82f61743d76dec1098245192a4CAS |

Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family – purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. Journal of Biological Chemistry 276, 38862–38869.
DGAT2 is a new diacylglycerol acyltransferase gene family – purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVenur4%3D&md5=65cfeadad39ee60cc405025b6579f54cCAS | 11481333PubMed |

Li RZ, Yu KS, Hatanaka T, Hildebrand DF (2010a) Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnology Journal 8, 184–195.
Vernonia DGATs increase accumulation of epoxy fatty acids in oil.Crossref | GoogleScholarGoogle Scholar |

Li RZ, Yu KS, Hildebrand DF (2010b) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxyl fatty acid accumulating plants. Lipids 45, 145–157.
DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxyl fatty acid accumulating plants.Crossref | GoogleScholarGoogle Scholar |

Liu Q, Siloto RM, Snyder CL, Weselake RJ (2011) Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis. Journal of Biological Chemistry 286, 13 115–13 126.
Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVKmtrg%3D&md5=e0117ffce53c105bc53302e23951a234CAS |

Lung SC, Weselake R (2006) Diacylglycerolacyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41, 1073–1088.
Diacylglycerolacyltransferase: a key mediator of plant triacylglycerol synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVyrsQ%3D%3D&md5=c233ba8f8202b016bf2b377d31c989fcCAS | 17269553PubMed |

Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiology 152, 670–684.
Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFegtrc%3D&md5=c11dda682f2661d209624551d7976804CAS | 19965969PubMed |

Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122.
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVamsb4%3D&md5=b68e68cb8fac2ba035b42af508150f8cCAS | 7737504PubMed |

Nykiforuk CL, Furukawa-Stoffer TL, Huff PW, Sarna M, Laroche A, Moloney MM, Weselake RJ (2002) Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis. Biochimica et Biophysica Acta 1580, 95–109.
Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Khurk%3D&md5=b72d331f58f643b75d0549a9885c0513CAS | 11880235PubMed |

Ohlrogge J, Browse J (1995) Lipid biosynthesis. The Plant Cell 7, 957–970.

Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds, molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiology 141, 1533–1543.
Cytosolic triacylglycerol biosynthetic pathway in oilseeds, molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKitLo%3D&md5=0f58a93572a63c0ccd425306be496c36CAS | 16798944PubMed |

Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. Journal of Biological Chemistry 277, 6478–6482.
Storage lipid synthesis is non-essential in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFyqs7g%3D&md5=d4b7ccf030a3b4838c883fd08ede22c9CAS | 11741946PubMed |

Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmicreticulum. The Plant Cell 18, 2294–2313.
Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmicreticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKgurbN&md5=20a36dae84f4428ca8596ceeab94fba5CAS | 16920778PubMed |

Siloto RMP, Truksa M, He XH, McKeon T, Weselake RJ (2009) Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids 44, 963–973.
Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OgtLvK&md5=82e15667a62c377c0588669ac44d1dc9CAS |

Sorger D, Athenstaedt K, Hrastnik C, Daum G (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. Journal of Biological Chemistry 279, 31 190–31 196.
A yeast strain lacking lipid particles bears a defect in ergosterol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslOku7s%3D&md5=7d6d6b1489d02af07d20732083cb6c88CAS |

Stone SJ, Levin MC, Farese RV (2006) Membrane topology and identification of key functional amino acid residues of murine acyl-CoA: diacylglycerol acyltransferase-2. Journal of Biological Chemistry 281, 40 273–40 282.
Membrane topology and identification of key functional amino acid residues of murine acyl-CoA: diacylglycerol acyltransferase-2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCrt73O&md5=80153cf9ad35a0ada00ce51128879f30CAS |

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=1cb9ab514ae3ba159839b08e3f1514faCAS | 21546353PubMed |

Turchetto-Zolet AC, Maraschin FS, de Morais GL, Cagliari A, Andrade CM, Margis-Pinheiro M, Margis R (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evolutionary Biology 11, 263–276.
Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlamu7vN&md5=bad5df2ae8e231ead6e3b98d82fc61d6CAS | 21933415PubMed |

Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiology and Biochemistry 48, 407–416.
Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVeisr8%3D&md5=bafa0c8b6be410a8c699c63240709e18CAS | 20400321PubMed |

Wang J, Li R, Lu D, Ma S, Yan Y, Li W (2009) A quick isolation method for mutants with high lipid yield in oleaginous yeast. World Journal of Microbiology & Biotechnology 25, 921–925.
A quick isolation method for mutants with high lipid yield in oleaginous yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFCmtrk%3D&md5=c20ad6a56c9793be541786a09faf28f5CAS |

Worrall D (1998) PCR analysis of transgenic tobacco plants. Methods in Molecular Biology 81, 417–423.

Xu J, Francis T, Mietkiewska E, Giblin EM, Barton DL, Zhang Y, Zhang M, Taylor DC (2008) Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1(DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnology Journal 6, 799–818.
Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1(DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1entbbN&md5=51ea737aaf72f55ac5ff3c3320234ad3CAS | 18631243PubMed |

Xu RH, Wang RL, Liu AZ (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass and Bioenergy 35, 1683–1692.
Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12gsLw%3D&md5=0bd3ae323166428c9c1d0a753b428abbCAS |

Yu K, Li R, Hatanaka T, Hildebrand D (2008) Cloning and functional analysis of two type 1diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry 69, 1119–1127.
Cloning and functional analysis of two type 1diacylglycerol acyltransferases from Vernonia galamensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlKjtLk%3D&md5=594004d8c575923f24ca5a41d169eceaCAS | 18179805PubMed |

Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferase shave overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. The Plant Cell 21, 3885–3901.
DGAT1 and PDAT1 acyltransferase shave overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFSisro%3D&md5=33872cd0b5f97782d4d4113466c8f9a0CAS | 20040537PubMed |

Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genetics 40, 367–372.
A phenylalanine in DGAT is a key determinant of oil content and composition in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKhtrk%3D&md5=ff361573328d990d49ced103bfc0cc8aCAS | 18278045PubMed |

Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. The Plant Journal 19, 645–653.
The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFOnsLc%3D&md5=f1861078e99b265f031d0c55d4c3a8fbCAS |