Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

Aguida M. A. P. Morales A , Jamie A. O’Rourke B , Martijn van de Mortel C , Katherine T. Scheider D , Timothy J. Bancroft E , Aluízio Borém A , Rex T. Nelson F , Dan Nettleton E , Thomas J. Baum C , Randy C. Shoemaker F , Reid D. Frederick D , Ricardo V. Abdelnoor G , Kerry F. Pedley D , Steven A. Whitham C and Michelle A. Graham F H I
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil.

B USDA-Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN 55108, USA.

C Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA.

D USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA.

E Department of Statistics, Iowa State University, Ames, IA 50014, USA.

F USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA.

G Laboratório de Biotecnologia Vegetal e Bioinformática, Embrapa Soja, Rod. Carlos João Strass, 86001-970, Londrina – PR, Brazil.

H Department of Agronomy, Iowa State University, Ames, IA 50014, USA.

I Corresponding author. Email: michelle.graham@ars.usda.gov

Functional Plant Biology 40(10) 1029-1047 https://doi.org/10.1071/FP12296
Submitted: 5 October 2012  Accepted: 12 January 2013   Published: 15 July 2013

Abstract

Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82) across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes induced at 12 h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced and empty vector-treated PI459025B plants 14 days after infection (dai) with P. pachyrhizi. This identified genes, including transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated resistance responses. These genes are targets for future P. pachyrhizi resistance research.

Additional keywords: defence, genomics, resistant genes, Rpp4, soybean.


References

Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biologia Plantarum 54, 201–212.
Transcription factors in plants and ABA dependent and independent abiotic stress signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslakur0%3D&md5=0e1e2726ad033f6eceb93b02579c16afCAS |

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFyhu7w%3D&md5=d389894c2f2dfdd4a57a2967cd545b08CAS | 9254694PubMed |

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh L-SL (2004) UniProt – the universal protein knowledgebase. Nucleic Acids Research 32, D115–D119.
UniProt – the universal protein knowledgebase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSru7vK&md5=a541b354dd042332250347bdaf835126CAS | 14681372PubMed |

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al (2000) Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29.
Gene ontology: tool for the unification of biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFSlsbc%3D&md5=e08db0985bd427be4394eb56d6b08cf2CAS | 10802651PubMed |

Assunção AGL, Herrero E, Lin Y, Huettel B, Talukdar S, Smaczniak C, Immink RGH, van Eldik M, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America 107, 10 296–10 301.
Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency.Crossref | GoogleScholarGoogle Scholar |

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) ‘Current protocols in molecular biology.’ (John Wiley & Sons: Hoboken, NJ)

Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology 159, 266–285.
Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2gs7o%3D&md5=f5f9dd4e26be600f23b10415ef5f25ceCAS | 22392279PubMed |

Bolton MD (2009) Primary metabolism and plant defense: fuel for the fire. Molecular Plant-Microbe Interactions 22, 487–497.
Primary metabolism and plant defense: fuel for the fire.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Wnsrk%3D&md5=8bc5a71ea80175b1da2e49cdabc624bbCAS | 19348567PubMed |

Bonde MR, Nester SE, Austin CN, Stone CL, Frederick RD, Hartman GL, Miles MR (2006) Evaluation of virulence of Phakopsora pachyrhizi and P. meibomiae isolates. Plant Disease 90, 708–716.
Evaluation of virulence of Phakopsora pachyrhizi and P. meibomiae isolates.Crossref | GoogleScholarGoogle Scholar |

Bonferroni CE (1935) Ill Calcolo delle assicurazioni su gruppi di teste. In ‘Studi in Onore del Professore Salvatore Ortu Carboni’. pp. 13–60. (Rome, Italy)

Bromfield KR, Hartwig EE (1980) Resistance to soybean rust and mode of inheritance. Crop Science 20, 254–255.

Chakraborty N, Curley J, Frederick RD, Hyten DL, Nelson RL, Hartman GL, Diers B (2009) Mapping and confirmation of a new allele at Rpp1 from soybean PI 594538A conferring RB lesion-type resistance to soybean rust. Crop Science 49, 783–790.
Mapping and confirmation of a new allele at Rpp1 from soybean PI 594538A conferring RB lesion-type resistance to soybean rust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFKhsLw%3D&md5=328ff353ed6416a7d3bb08170f3032c7CAS |

Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology 10, 281
Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFA%3D&md5=d9ab86dd15105064e3ce155a175c728dCAS | 21167067PubMed |

Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta 1819, 120–128.
The role of WRKY transcription factors in plant abiotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVajs70%3D&md5=2eaa11f6ede11c0b6a048e910a65519fCAS | 21964328PubMed |

Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology 129, 661–677.
Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jtrk%3D&md5=6deafbe926626fe9d239c923543d920cCAS | 12068110PubMed |

Choi JJ, Alkarouf NW, Schneider KT, Matthews BF, Frederick RD (2008) Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Functional & Integrative Genomics 8, 341–359.
Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFansrrI&md5=c58c8da08df4073ea3b4da84026fdc49CAS |

de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20, 1453–1454.
Open source clustering software.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVSrt7Y%3D&md5=bfbf741ce64f1c74ccd430fcf7ba08e8CAS | 14871861PubMed |

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends in Plant Science 15, 573–581.
MYB transcription factors in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ogtb3I&md5=6674354f60ac25721d5a140a4eb6821aCAS | 20674465PubMed |

Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Munoz-Blanco J, Caballero JL (2009) Evidence for a positive regulatory role of strawberry (Fragaria × ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. Journal of Experimental Botany 60, 3043–3065.
Evidence for a positive regulatory role of strawberry (Fragaria × ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsValtrk%3D&md5=8bee7b88ba7b782edc402bd5edf5c516CAS | 19470657PubMed |

Fisher RA (1966) ‘The design of experiments.’ 8th edn. (Oliver and Boyd: Edinburgh)

Frith MC, Fu Y, Chen JF, Hansen U, Weng Z (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Research 32, 1372–1381.
Detection of functional DNA motifs via statistical over-representation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSqu7w%3D&md5=1bc89e31597495adadc76e82beed87bdCAS | 14988425PubMed |

Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiology 157, 804–814.
Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlahu7fK&md5=8945f026fcd38e9ec4371e0ed1fbdc00CAS | 21803860PubMed |

Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology 155, 464–476.
Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFagt7Y%3D&md5=3196b8885bd15e657162872a29d525faCAS | 21030507PubMed |

Garcia A, Calvo ES, de Souza Kiihl R, Harada A, Hiromoto DM, Vieira LG (2008) Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theoretical and Applied Genetics 117, 545–553.
Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFOntr0%3D&md5=241cd3d726c1ddd40ac53c9cb5d031b2CAS | 18506417PubMed |

Giraud E, Aken O, Ho LH, Whelan J (2009) The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a. Plant Physiology 150, 1286–1296.
The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFertb8%3D&md5=713fdcd356c2062de075c8536ea7d6c4CAS | 19482916PubMed |

Graham MA (2012) Identification of genes that mediate protection against soybean pathogens. In ‘Designing soybeans for the 21st century’. (Ed. R Wilson) pp. 97–108. (American Oil Chemists Society Press: Urbana, IL)

Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76, 543–553.
The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlOntb4%3D&md5=0c95f8e96b536ef8de58ffd7af4323a6CAS | 8313474PubMed |

Hartwig EE (1986) Identification of a fourth major gene conferring resistance to soybean rust. Crop Science 26, 1135–1136.
Identification of a fourth major gene conferring resistance to soybean rust.Crossref | GoogleScholarGoogle Scholar |

Hartwig EE, Bromfield KR (1983) Relationships among 3 genes conferring specific resistance to rust in soybeans. Crop Science 23, 237–239.
Relationships among 3 genes conferring specific resistance to rust in soybeans.Crossref | GoogleScholarGoogle Scholar |

Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Science 185-186, 288–297.
Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFCrtLk%3D&md5=4abfea45b497e86b9eb1f867f2790518CAS | 22325892PubMed |

Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology 45, 101–127.
Cell wall-associated mechanisms of disease resistance and susceptibility.Crossref | GoogleScholarGoogle Scholar | 17352660PubMed |

Hyten DL, Hartman GL, Nelson RL, Frederick RD, Concibido VC, Narvel JM, Cregan PB (2007) Map location of the Rpp1 locus that confers resistance to soybean rust in soybean. Crop Science 47, 837–840.
Map location of the Rpp1 locus that confers resistance to soybean rust in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlShtbo%3D&md5=c1c6a1fc1c2a647d3d7f705d7867c4d7CAS |

Hyten DL, Smith JR, Frederick RD, Tuchekr ML, Song Q, Cregan PB (2009) Bulked segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean. Crop Science 49, 265–271.
Bulked segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsF2itb8%3D&md5=4c2600a229ca2072c24e9839b28d5e80CAS |

Journot-Catalino N, Somssich IE, Roby D, Kroi T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. The Plant Cell 18, 3289–3302.
The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1CrtA%3D%3D&md5=0507295b30a7a1b87b1d1050e83b9470CAS | 17114354PubMed |

Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. The Plant Cell 14, 343–357.
Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVKgtbs%3D&md5=4c566b2ebbc1655f1624ea39decc9b9bCAS | 11884679PubMed |

Kawaoka A, Ebinuma H (2001) Transcriptional control of lignin biosynthesis by tobacco LIM protein. Phytochemistry 57, 1149–1157.
Transcriptional control of lignin biosynthesis by tobacco LIM protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Ojt7k%3D&md5=c624b5113038bae296cc296821739e12CAS | 11430987PubMed |

Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends in Plant Science 14, 373–382.
Linking development to defense: auxin in plant-pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVajs74%3D&md5=1713d4f9dcbed1aa8f268afcdc312a68CAS | 19559643PubMed |

Kim KS, Unfried JR, Hyten DL, Frederick RD, Hartman GL, Nelson RL, Song Q, Diers BW (2012) Molecular mapping of soybean rust resistance in soybean accession PI561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theoretical and Applied Genetics 125, 1339–1352.
Molecular mapping of soybean rust resistance in soybean accession PI561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKksLfI&md5=1ce2a483b1e170f1941c6850cd057433CAS | 22837016PubMed |

Kumudini S, Godoy CV, Board JE, Omielan J, Tollenaar M (2008) Mechanisms involved in soybean rust-induced yield reduction. Crop Science 48, 2334–2342.
Mechanisms involved in soybean rust-induced yield reduction.Crossref | GoogleScholarGoogle Scholar |

Lakhssassi N, Doblas VG, Rosado A, Estaban del Valle A, Posé D, Jimenez AJ, Castillo AG, Valpuesta V, Borsani O, Botella MA (2012) The Arabidopsis thaliana TETRATRICO PEPTIDE THIOREDOXIN-LIKE gene family is required for osmotic stress tolerance and male sporogenesis. Plant Physiology 158, 1252–1266.
The Arabidopsis thaliana TETRATRICO PEPTIDE THIOREDOXIN-LIKE gene family is required for osmotic stress tolerance and male sporogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVOksb4%3D&md5=a5e70ec356446937bd134ae6362d3da9CAS | 22232384PubMed |

Li S, Smith JR, Ray JD, Frederick RD (2012) Identification of a new soybean rust resistance gene in PI 567102B. Theoretical and Applied Genetics 125, 133–142.
Identification of a new soybean rust resistance gene in PI 567102B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1arurw%3D&md5=022c2946088cb7b24cc953a0cfe9aae3CAS | 22374138PubMed |

Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1–TGA1 system of Arabidopsis thaliana by nitric oxide. The Plant Cell 22, 2894–2907.
Redox regulation of the NPR1–TGA1 system of Arabidopsis thaliana by nitric oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlegsbvO&md5=b98170677290cb93f0d74ea9c3be1f3aCAS | 20716698PubMed |

Liu JZ, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu Q, Lee L, Nettleton D, Hill J, Whitham SA (2011) Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiology 157, 1363–1378.
Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFehurzL&md5=1096e19a68e1733800c3f3a76e7df01cCAS | 21878550PubMed |

Maekawa S, Sato T, Asada Y, Yasuda S, Yoshida M, Chiba Y, Yamaguchi J (2012) The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Molecular Biology 79, 217–227.
The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVynurc%3D&md5=5d5d25574a12035b619c2e3b5de4b2e8CAS | 22481162PubMed |

Major IT, Nicole MC, Duplessis S, Seguin A (2010) Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynthesis Research 104, 41–48.
Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFKltLk%3D&md5=c7a413446ccf2ed46afe728d432d658cCAS | 20012201PubMed |

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006) TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes. Nucleic Acids Research 34, D108–D110.
TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFymtA%3D%3D&md5=56e84c5028b5c9fd6c0a3d5977fa2e63CAS | 16381825PubMed |

McLean RJ, Byth D (1980) Inheritance of resistance to rust (Phakopsora pachyrhizi) in soybean. Australian Journal of Agricultural Research 31, 951–956.
Inheritance of resistance to rust (Phakopsora pachyrhizi) in soybean.Crossref | GoogleScholarGoogle Scholar |

Melching JS, Bromfield KR, Kingsolver CH (1983) The plant pathogen containment facility at Frederick, Maryland. Plant Disease 67, 717–722.
The plant pathogen containment facility at Frederick, Maryland.Crossref | GoogleScholarGoogle Scholar |

Meyer JDF, Silva DCG, Yang C, Pedley KF, Zhang C, van de Mortel M, Hill JH, Shoemaker RC, Abdelnoor RV, Whitham SA, Graham MA (2009) Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in Soybean. Plant Physiology 150, 295–307.
Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in Soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFahs7k%3D&md5=0baf09d8f4b9fc8a735722eef402fbf1CAS |

Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 580, 6537–6542.
Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Krt7nE&md5=38f641f76d9fc4caca37045c76b01e24CAS | 17112521PubMed |

Monteros MJ, Missaoui AM, Phillips DV, Walker DR, Boerma HR (2007) Mapping and confirmation of the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Crop Science 47, 829–834.
Mapping and confirmation of the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlShtbw%3D&md5=67e68731022309ab199383a5acdda855CAS |

Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biology 6, 18
An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice.Crossref | GoogleScholarGoogle Scholar | 16939657PubMed |

Nettleton D (2006) A discussion of statistical methods for design and analysis of microarray experiments for plant scientists. The Plant Cell 18, 2112–2121.
A discussion of statistical methods for design and analysis of microarray experiments for plant scientists.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKgurjK&md5=3c53008d2c8c9d0ec61c72d8c7804a76CAS | 16968907PubMed |

Ohme-Takagi KS, Shinshi H (2000) Regulation of ethylene-induced transcription of defense genes. Plant & Cell Physiology 41, 1187–1192.
Regulation of ethylene-induced transcription of defense genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKgur4%3D&md5=9a946871ff38e8cf5df76ea86ec7f585CAS |

Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal 64, 912–923.
Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGrtw%3D%3D&md5=972361c1b5ea31d12cf0b4ae9a9670e7CAS | 21143673PubMed |

Pandey AK, Yang C, Zhang C, Graham MA, Horstman HD, Lee Y, Zabotina OA, Hill JH, Pedley KF, Whitham SA (2011) Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Molecular Plant-Microbe Interactions 24, 194–206.
Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSjt70%3D&md5=02f76340b2938a2f3e9a31ddc667319fCAS | 20977308PubMed |

Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN (2007) Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Functional & Integrative Genomics 7, 291–301.
Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFehu74%3D&md5=079fa41f4375a77c3448f986dc5f1defCAS |

Panthee DR, Marois JJ, Wright DL, Narva’ez D, Yuan JS, Stewart CN (2009) Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. Theoretical and Applied Genetics 118, 359–370.
Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymurrI&md5=5dd0bd11b27f6efc3f9c06e3103bb69cCAS | 18853130PubMed |

R Development Core Team (2006) ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria)

Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends in Plant Science 15, 247–258.
WRKY transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVaqsbk%3D&md5=5939bfe7f89278cbea80ef0857e3c2d2CAS | 20304701PubMed |

Saldanha AJ (2004) Java TreeView: extensible visualization of microarray data. Bioinformatics 20, 3246–3248.
Java TreeView: extensible visualization of microarray data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSrur%2FO&md5=03e5e3308c90ff2da55098f42b71b2fcCAS | 15180930PubMed |

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.
Genome sequence of the palaeopolyploid soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVClsQ%3D%3D&md5=25ab7ea670a325318576566fa9c47bc4CAS | 20075913PubMed |

Schneider KT, van de Mortel M, Bancroft TJ, Braun E, Nettleton D, Nelson RT, Frederick RD, Baum TJ, Graham MA, Whitham SA (2011) Biphasic gene expression changes elicited by Phakopsora pachyrhizi in soybean correlate with fungal penetration and haustoria formation. Plant Physiology 157, 355–371.
Biphasic gene expression changes elicited by Phakopsora pachyrhizi in soybean correlate with fungal penetration and haustoria formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sit7zE&md5=e1a6c14a17918a33e690d85bb9408d7aCAS | 21791600PubMed |

Sell S, Hehl R (2004) Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. European Journal of Biochemistry 271, 4534–4544.
Functional dissection of a small anaerobically induced bZIP transcription factor from tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKmtb3J&md5=6499b68f650716e35bf908395acd50fbCAS | 15560794PubMed |

Silva DCG, Yamanaka N, Brogin RL, Arias CAA, Nepomuceno AL, Di Mauro AO, Pereira SS, Nogueira LM, Passianotto ALL, Abdelnoor RV (2008) Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theoretical and Applied Genetics 117, 57–63.
Molecular mapping of two loci that confer resistance to Asian rust in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlWitr0%3D&md5=ec633a07de54017b064a2ab337b790ccCAS |

Sinclair JB (1989) Threats to soybean production in the tropics: red leaf blotch and leaf rust. Plant Disease 73, 604–606.
Threats to soybean production in the tropics: red leaf blotch and leaf rust.Crossref | GoogleScholarGoogle Scholar |

Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, article 3
Linear models and empirical Bayes methods for assessing differential expression in microarray experiments.Crossref | GoogleScholarGoogle Scholar |

Smyth GK (2005) Limma: linear models for microarray data. In ‘Bioinformatics and computational biology solutions using R and Bioconductor’. (Eds R Gentleman, V Carey, S Dudoit, R Irizarry, W Huber) pp. 397–420. (Springer: New York)

Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 100, 9440–9445.
Statistical significance for genomewide studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtlyktbY%3D&md5=230cc6c0c8ad8371b911505c6bcf910cCAS | 12883005PubMed |

Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weissha B, Ulm R (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant, Cell & Environment 33, 88–103.
The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOqsbg%3D&md5=ff7b7180397790a2d310d3b30bc27064CAS |

Sugano S, Jianng C, Miyazawa S, Masumoto C, Yazawa K, Hayashi N, Shimono M, Nakayama A, Miyao M, Takatsuji H (2010) Roles of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Molecular Biology 74, 549–562.
Roles of OsNPR1 in rice defense program as revealed by genome-wide expression analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmtLnN&md5=b42f57427fa3fea35eafb9b0f013cac2CAS | 20924648PubMed |

Sun J, Liang H, Xy Y, Li H, Wy X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant & Cell Physiology 48, 1148–1158.
The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrvO&md5=0cde7adbb563031df54f457944693170CAS |

Tremblay A, Hosseini P, Alkharouf NW, Li S, Matthews BF (2010) Transcriptome analysis of a compatible response by Glycine max to Phakopsora pachyrhizi infection. Plant Science 179, 183–193.
Transcriptome analysis of a compatible response by Glycine max to Phakopsora pachyrhizi infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyqu7Y%3D&md5=7570de061de9f690c70902f776f01c06CAS |

Tremblay A, Hosseini P, Li S, Alkarouf NW, Matthews BF (2012) Identification of genes expressed by Phakopsora pachyrhizi, the pathogen causing soybean rust, at a late stage of infection of susceptible soybean leaves. Plant Pathology 61, 773–786.
Identification of genes expressed by Phakopsora pachyrhizi, the pathogen causing soybean rust, at a late stage of infection of susceptible soybean leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCqsLjM&md5=f8c2df22187a4a1de68b1be196d4a670CAS |

van de Mortel M, Recknor JC, Graham MA, Nettleton D, Dittman JD, Nelson RT, Godoy CV, Abdelnoor RV, Almeida AMR, Baum TJ, Whitham SA (2007) Distinct biphasic mRNA changes in response to Asian soybean rust infection. Molecular Plant-Microbe Interactions 20, 887–899.
Distinct biphasic mRNA changes in response to Asian soybean rust infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1emsrc%3D&md5=2d231fa597b4795000c4433b93ebc177CAS | 17722693PubMed |

Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytologist 159, 93–100.
Rust haustoria: nutrient uptake and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslalt74%3D&md5=5b7d01e267540a4b2cb94c490bdf0394CAS |

Wang A, Libaut M, Joshi T, Valliyodan B, Nguyen HT, Xu D, Stacey G, Cheng J (2010) SoyDB: a knowledge database of soybean transcription factors. BMC Plant Biology 10, 14
SoyDB: a knowledge database of soybean transcription factors.Crossref | GoogleScholarGoogle Scholar |

Wei W, Huang J, Hao Y, Zou H, Wang H, Zhao J, Liu X, Zhang W, Ma B, Zhang JS, Chen SY (2009) Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE 4, e7209
Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.Crossref | GoogleScholarGoogle Scholar | 19789627PubMed |

Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC®: a database on transcription factors and their DNA binding sites. Nucleic Acids Research 24, 238–241.
TRANSFAC®: a database on transcription factors and their DNA binding sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFSiug%3D%3D&md5=2ccabcb5239e626bc43eaa930d2b329dCAS | 8594589PubMed |

Wise RP, Caldo RA, Hong L, Shen L, Cannon EK, Dickerson JA (2007) BarleyBase/PLEXdb: a unified expression profiling database for plants and plant pathogens. Methods in Molecular Biology (Clifton, N.J.) 406, 347–363.

Xue GP, Way HM, Richardson T, Drenth JM, Joyce PA, McIntyr CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant 4, 697–712.
Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1Orsrs%3D&md5=0168b353ee0f9f8444c3183f28dcd3cbCAS | 21459832PubMed |

Yamaoka Y, Fujiwara Y, Kakishima M, Katsuya K, Yamada K, Hagiwara H (2002) Pathogenic races of Phakopsora pachyrhizi on soybean and wild host plants collected in Japan. Journal of General Plant Pathology 68, 52–56.
Pathogenic races of Phakopsora pachyrhizi on soybean and wild host plants collected in Japan.Crossref | GoogleScholarGoogle Scholar |

Yang S, Sweetman JP, Amirsadeghi S, Barghchi M, Huttly AK, Chung W, Twell D (2001) Novel anther-specific myb(MYB?) genes from tobacco as putative regulators of phenylalanine ammonia-lyase expression. Plant Physiology 126, 1738–1753.
Novel anther-specific myb(MYB?) genes from tobacco as putative regulators of phenylalanine ammonia-lyase expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFOis7w%3D&md5=fee9e71e4722ba17a20b76f7b04218a3CAS | 11500571PubMed |

Yorinori JT, Paiva WM, Frederick RD, Costamilan LM, Bertagnolli PF, Hartman GE, Godoy CV, Nunes J (2005) Epidemics of soybean rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Disease 89, 675–677.
Epidemics of soybean rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003.Crossref | GoogleScholarGoogle Scholar |