Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

R-type anion channel activation is an essential step for ROS-dependent innate immune response in Arabidopsis suspension cells

Jean Colcombet B D , Yves Mathieu A D , Remi Peyronnet A , Nicolas Agier C , Françoise Lelièvre A , Hélène Barbier-Brygoo A and Jean-Marie Frachisse A E
+ Author Affiliations
- Author Affiliations

A Institut des Sciences du Végétal, CNRS UPR 2355, 22 Avenue de la Terrasse, 91198 Gif sur Yvette, France.

B Present address: Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, 91057 Evry, France.

C Present address: CNRS-CGM, 14 Avenue de la Terrasse, 91198 Gif sur Yvette, France.

D These authors contributed equally to the work.

E Corresponding author. Email: frachisse@isv.cnrs-gif.fr

Functional Plant Biology 36(9) 832-843 https://doi.org/10.1071/FP09096
Submitted: 1 May 2009  Accepted: 23 July 2009   Published: 3 September 2009

Abstract

Plants are constantly exposed to environmental biotic and abiotic stresses. Plants cells perceive these factors and trigger early responses followed by delayed and complex adaptation processes. Using cell suspensions of Arabidopsis thaliana (L.) as a cellular model, we investigated the role of plasma membrane anion channels in Reactive Oxygen Species (ROS) production and in cell death which occurs during non-host pathogen infection. Protoplasts derived from Arabidopsis suspension cells display two anion currents with characteristics very similar to those of the slow nitrate-permeable (S-type) and rapid sulfate-permeable (R-type) channels previously characterised in hypocotyl cells and other cell types. Using seven inhibitors, we showed that the R-type channel and ROS formation in cell cultures present similar pharmacological profiles. The efficiency of anion channel blockers to inhibit ROS production was independent of the nature of the triggering signal (osmotic stress or general elicitors of plant defence), indicating that the R-type channel represents a crossroad in the signalling pathways leading to ROS production. In a second step, we show that treatment with R-type channel blockers accelerates cell death triggered by the non-specific plant pathogen Xanthomonas campestris. Finally, we discuss the hypothesis that the R-type channel is involved in innate immune response allowing cell defence via antibacterial ROS production.

Additional keywords: activated oxygen species, AOS, Arabidopsis thaliana, cell suspensions, defence, immunity, innate immunity, PAMPs, pathogen-associated molecular patterns, pharmacology, plasma membrane, Reactive Oxygen Species, sulphate, transduction.


Acknowledgements

The authors thank their colleagues, S. Thomine, J. Guern, C. Lauriere, F. Bouteau and E. Diatloff for their advice and A. Kiwi Winger for MS reading. We thank Thomas Boller and Georg Felix (Botanisches Institut der Universitat Basel, Switzerland) for the kind gift of flagellin 22. Dominique Roby (Laboratoire des Interactions Plantes Microorganismes, CNRS/INRA, France) is acknowledged for providing Xanthomonas campestris strain. We thank Hoffmann-La Roche SA (Roche, Basel, Switzerland) for providing us with mibefradil. This work was funded by the French Centre National de la Recherche Scientifique and by a European grant from a Research Training Network (NICIP CT-2002–000245).


References


Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, Nobles M, Segal AW (2004) The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 427, 853–858.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. The Plant Cell 19, 1081–1095.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Amano T, Hirasawa K, O’Donohue M, Pernolle J, Shioi Y (2003) A versatile assay for the accurate, time-resolved determination of cellular viability. Analytical Biochemistry 314, 1–7.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J, Maurel C (2000) Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochimica et Biophysica Acta 1465, 199–218.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cazale AC, Rouet-Mayer MA, Barbier-Brygoo H, Mathieu Y, Lauriere C (1998) Oxidative burst and hypoosmotic stress in tobacco cell suspensions. Plant Physiology 116, 659–669.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. The Biochemical Journal 413, 217–226.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Colcombet J, Thomine S, Guern J, Frachisse JM, Barbier-Brygoo H (2001) Nucleotides provide a voltage-sensitive gate for the rapid anion channel of Arabidopsis hypocotyl cells. The Journal of Biological Chemistry 276, 36 139–36 145.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Colcombet J, Lelievre F, Thomine S, Barbier-Brygoo H, Frachisse JM (2005) Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. Journal of Experimental Botany 56, 1897–1903.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

de Angeli A, Thomine S, Frachisse JM, Ephritikhine G, Gambale F, Barbier-Brygoo H (2007) Anion channels and transporters in plant cell membranes. FEBS Letters 581, 2367–2374.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101, 15 249–15 254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Diatloff E, Roberts M, Sanders D, Roberts SK (2004) Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation. Plant Physiology 136, 4136–4149.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Letters 527, 43–50.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

El-Maarouf H, Barny MA, Rona JP, Bouteau F (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Letters 497, 82–84.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V , et al . (2008) Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chemistry & Biology 15, 438–448.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Errakhi R, Meimoun P, Lehner A, Vidal G, Briand J, Corbineau F, Rona JP, Bouteau F (2008) Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. Journal of Experimental Botany 59, 3121–3129.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Frachisse JM, Thomine S, Colcombet J, Guern J, Barbier-Brygoo H (1999) Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant Physiology 121, 253–262.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Frachisse JM, Colcombet J, Guern J, Barbier-Brygoo H (2000) Characterization of a nitrate-permeable channel able to mediate sustained anion efflux in hypocotyl cells from Arabidopsis thaliana. The Plant Journal 21, 361–371.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19, 711–724.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gauthier A, Lamotte O, Reboutier D, Bouteau F, Pugin A, Wendehenne D (2007) Cryptogein-induced anion effluxes: electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death. Plant Signaling & Behavior 2, 86–95.
PubMed |
open url image1

Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiology 113, 269–279.
CAS | PubMed |
open url image1

Ghelis T, Dellis O, Jeannette E, Bardat F, Cornel D, Miginiac E, Rona J, Sotta B (2000) Abscisic acid specific expression of RAB18 involves activation of anion channels in Arabidopsis thaliana suspension cells. FEBS Letters 474, 43–47.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv: European Journal of Phycology 391, 85–100.
CAS | Crossref |
open url image1

Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2– from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences of the United States of America 94, 4800–4805.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS (1999) Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channels and intracellular Ca2+ release in HepG2 human hepatoblastoma cells. Biochemical and Biophysical Research Communications 261, 682–688.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum- sensitive and an aluminum-resistant cultivar. Plant Physiology 126, 397–410.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal 22, 2623–2633.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Current Opinion in Plant Biology 7, 323–328.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proceedings of the National Academy of Sciences of the United States of America 102, 4203–4208.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lynch RE, Fridovich I (1978) Permeation of the erythrocyte stroma by superoxide radical. The Journal of Biological Chemistry 253, 4697–4699.
CAS | PubMed |
open url image1

Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proceedings of the National Academy of Sciences of the United States of America 97, 9487–9492.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Marten I, Zeilinger C, Redhead C, Landry DW, al-Awqati Q, Hedrich R (1992) Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. The EMBO Journal 11, 3569–3575.
CAS | PubMed |
open url image1

Mathieu I, Rouet-Mayer M-A, Barbier-Brygoo H, Laurière C (2002) Activation by fatty acids of the production of active oxygen species by tobacco cells. Plant Physiology and Biochemistry 40, 313–324.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214, 775–782.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mithöfer A, Ebel J, Felle HH (2005) Cation fluxes cause plasma membrane depolarization involved in beta-glucan elicitor-signaling in soybean roots. Molecular Plant-Microbe Interactions 18, 983–990.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405–410.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S (1998) Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. Journal of Bacteriology 180, 2636–2643.
CAS | PubMed |
open url image1

Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods in Enzymology 207, 123–131.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews 198, 249–266.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pugin A, Frachisse JM, Tavernier E, Bligny R, Gout E, Douce R, Guern J (1997) Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. The Plant Cell 9, 2077–2091.
CAS | Crossref | PubMed |
open url image1

Queric NV, Soltwedel T, Arntz WE (2004) Application of a rapid direct viable count method to deep-sea sediment bacteria. Journal of Microbiological Methods 57, 351–367.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reboutier D, Bianchi M, Brault M, Roux C, Dauphin A, Rona JP, Legue V, Lapeyrie F, Bouteau F (2002) The indolic compound hypaphorine produced by ectomycorrhizal fungus interferes with auxin action and evokes early responses in nonhost Arabidopsis thaliana. Molecular Plant-Microbe Interactions 15, 932–938.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. The New Phytologist 169, 647–666.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roelfsema MR, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. The Plant Journal 37, 578–588.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ryan CA, Huffaker A, Yamaguchi Y (2007) New insights into innate immunity in Arabidopsis. Cellular Microbiology 9, 1902–1908.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schmidt C, Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells (large nitrate permeability). Plant Physiology 106, 383–391.
CAS | PubMed |
open url image1

Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proceedings of the National Academy of Sciences of the United States of America 89, 5025–5029.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schroeder JI, Schmidt C, Sheaffer J (1993) Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. The Plant Cell 5, 1831–1841.
CAS | Crossref | PubMed |
open url image1

Schwartz A, Ilan N, Schwarz M, Scheaffer J, Assmann SM, Schroeder JI (1995) Anion-channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells. Plant Physiology 109, 651–658.
CAS | PubMed |
open url image1

Sheridan JP, Miller AJ, Perry RN (2004) Early responses of resistant and susceptible potato roots during invasion by the potato cyst nematode Globodera rostochiensis. Journal of Experimental Botany 55, 751–760.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. The Journal of Biological Chemistry 280, 33 660–33 668.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Szabó I, Nilius B, Zhang X, Busch AE, Gulbins E, Suessbrich H, Lang F (1997) Inhibitory effects of oxidants on n-type K+ channels in T lymphocytes and Xenopus oocytes. Pflügers Archiv: European Journal of Phycology 433, 626–632.
Crossref |
open url image1

Thomine S, Zimmermann S, Guern J, Barbier-Brygoo H (1995) ATP-dependent regulation of an anion channel at the plasma membrane of protoplasts from epidermal cells of Arabidopsis hypocotyls. The Plant Cell 7, 2091–2100.
CAS | Crossref | PubMed |
open url image1

Thomine S, Guern J, Barbier-Brygoo H (1997) Voltage-dependent anion channel of Arabidopsis hypocotyls: nucleotide regulation and pharmacological properties. The Journal of Membrane Biology 159, 71–82.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Trouverie J, Vidal G, Zhang Z, Sirichandra C, Madiona K, Amiar Z, Prioul JL, Jeannette E, Rona JP, Brault M (2008) Anion channel activation and proton pumping inhibition involved in the plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells are both ROS dependent. Plant & Cell Physiology 49, 1495–1507.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Viana F, Van den Bosch L, Missiaen L, Vandenberghe W, Droogmans G, Nilius B, Robberecht W (1997) Mibefradil (Ro 40–5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22, 299–311.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A (2002) Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. The Plant Cell 14, 1937–1951.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. The Biochemical Journal 322(Pt 3), 681–692.
CAS | PubMed |
open url image1

Zimmermann S, Nurnberger T, Frachisse JM, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proceedings of the National Academy of Sciences of the United States of America 94, 2751–2755.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zimmermann S, Frachisse JM, Thomine S, Barbier-Brygoo H (1998) Elicitor-induced chloride efflux and anion channels in tobacco cell suspensions. Plant Physiology and Biochemistry 36, 665–674.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1