Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Regulation of Ku gene promoters in Arabidopsis by hormones and stress

Wen-Chi Chang A C , Yung-Kai Wang A C , Pei-Feng Liu A , Yu-Fang Tsai A , Lih-Ren Kong B , Chi-Kai Lin A , Chang-Hsien Yang B and Rong-Long Pan A D
+ Author Affiliations
- Author Affiliations

A Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan.

B Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan.

C These authors contributed equally to this work.

D Corresponding author. Email: rlpan@life.nthu.edu.tw

Functional Plant Biology 35(4) 265-280 https://doi.org/10.1071/FP07249
Submitted: 24 October 2007  Accepted: 29 April 2008   Published: 3 June 2008

Abstract

The Ku70/Ku80 heterodimer plays a crucial role in non-homologous end-joining during DNA repair, and is also involved in multiple cellular processes such as telomere maintenance, transcription, and apoptosis. In this study, we investigate the regulation of AtKu genes in higher plants. Promoters of the AtKu70 and AtKu80 were isolated from Arabidopsis and their activities characterised using GUS reporter constructs. AtKu promoter activities were relatively higher in hypocotyls and cotyledons upon germination and in stigma and siliques as well at their early developing stages. Furthermore, AtKu promoter activities could be enhanced by gibberellic acid, auxins, and jasmonic acid, but repressed by abscisic acid, salicylic acid, heat, drought and cold, respectively. Deletion analysis demonstrates minimal lengths of ~400 bp and 600 bp upstream of transcription start site for functional promoters of AtKu70 and AtKu80, respectively. Taken together, expressions of Ku genes are regulated both by developmental programs as well as by plant hormones and environmental stresses.

Additional keywords: DNA end-binding, environmental stress, GUS staining, Ku protein, phytohormone, promoter analysis.


Acknowledgements

The authors sincerely appreciate the National Science Council of the Republic of China for financially supporting this research under Contract Numbers of NSC90–2311-B-007-B30, NSC91–2311-B-007–034, and NSC95–2311-B-007–004. We thank Dr Shu-Hsing Wu for critical reading of the manuscript. In addition, we thank Drs Tsai-Yun Lin and Ning-Sun Yang for their technical assistance and suggestions in this work.


References


Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell 9, 1859–1868.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods in Molecular Biology 82, 259–266.
PubMed |
open url image1

Beck BD, Dynlacht JR (2001) Heat-induced aggregation of XRCC5 (Ku80) in nontolerant and thermotolerant cells. Radiation Research 156, 767–774.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bertuch A, Lundblad V (1998) Telomeres and double-strand breaks: trying to make ends meet. Trends in Cell Biology 8, 339–342.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Boyko A, Zemp F, Filkowski J, Kovalchuk I (2006) Double-strand break repair in plants is developmentally regulated. Plant Physiology 141, 488–497.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Brown AP, Dunn MA, Goddard NJ, Hughes MA (2001) Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L) gene blt101.1. Planta 213, 770–780.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bundock P, van Attikum H, Hooykaas P (2002) Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Research 30, 3395–3400.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Diaz-De-Leon F, Klotz KL, Lagrimini LM (1993) Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiology 101, 1117–1118.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology 1, 316–323.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Featherstone C, Jackson SP (1999) Ku, a DNA repair protein with multiple cellular functions? Mutation Research 434, 3–15.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Francoeur AM, Peebles CL, Gompper PT, Tan EM (1986) Identification of Ki (Ku, p70/p80) autoantigens and analysis of anti-Ki autoantibody reactivity. Journal of Immunology 136, 1648–1653. open url image1

Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. The Plant Journal 34, 427–440.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gallego ME, Jalut N, White CI (2003a) Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. The Plant Cell 15, 782–789.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003b) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. The Plant Journal 35, 557–565.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hardtke CS, Dorcey E, Osmont KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions. Trends in Cell Biology 17, 485–492.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jaiswal P, Ni J, Yap I, Ware D, Spooner W , et al. (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Research 34, D717–D723.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6, 3901–3907.
PubMed |
open url image1

Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30, 325–327.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li GC, He F, Shao X, Urano M, Shen L, Kim D, Borrelli M, Leibel SA, Gutin PH, Ling CC (2003) Adenovirus-mediated heat-activated antisense Ku70 expression radiosensitizes tumor cells in vitro and in vivo. Cancer Research 63, 3268–3274.
PubMed |
open url image1

Liu F, Andersen MN, Jensen CR (2003) Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Functional Plant Biology 30, 271–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

Liu PF, Chang WC, Wang YK, Munisamy SB, Hsu SH, Chang HY, Wu SH, Pan RL (2007) Differential regulation of Ku gene expression in etiolated mung bean hypocotyls by auxins. Biochimica et Biophysica Acta 1769, 443–454.
PubMed |
open url image1

Liu PF, Chang WC, Wang YK, Chang HY, Pan RL (2008) Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid. Biochimica et Biophysica Acta 1779, 164–174.
PubMed |
open url image1

Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology 63, 289–305.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S , et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Research 34, D108–D110.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiology 130, 111–119.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mimori T, Hardin JA (1986) Mechanism of interaction between Ku protein and DNA. Journal of Biological Chemistry 261, 10375–10379.
PubMed |
open url image1

Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. Journal of Clinical Investigation 68, 611–620.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J (1998) Functional dissection of a sugar-repressed alpha-amylase gene (RAmy1 A) promoter in rice embryos. FEBS Letters 423, 81–85.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Murashige T (1973) Nutrition of plant cells and organs in vitro. In Vitro 9, 81–85.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–479.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. The Plant Cell 9, 49–60.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pimenta Lange MJ, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biology 8, 281–290.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Current Opinion in Plant Biology 9, 454–459.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Molecular & General Genetics 231, 226–232. open url image1

Riha K, Shippen DE (2003) Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proceedings of the National Academy of Sciences USA 100, 611–615.
Crossref | GoogleScholarGoogle Scholar | open url image1

Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO Journal 21, 2819–2826.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roberts CS , Rajagopal S , Smith LA , Nguyen TA , Yang W et al (1998) ‘A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants by both Agrobacterium and direct DNA uptake methods. pCAMBIA Vector release manual version 3.05.’ (CAMBIA: Canberra.)

Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. The Plant Journal 11, 513–523.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rubio-Somoza I, Martinez M, Diaz I, Carbonero P (2006) HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination. The Plant Journal 45, 17–30.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schindler U, Beckmann H, Cashmore AR (1992) TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. The Plant Cell 4, 1309–1319.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiology 115, 327–334.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smider V, Rathmell WK, Lieber MR, Chu G (1994) Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. Science 266, 288–291.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tamura K, Adachi Y, Chiba K, Oguchi K, Takahashi H (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. The Plant Journal 29, 771–781.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews. Molecular Cell Biology 7, 847–859.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tuteja R, Tuteja N (2000) Ku autoantigen: a multifunctional DNA-binding protein. Critical Reviews in Biochemistry and Molecular Biology 35, 1–33.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tuteja N, Tuteja R, Ochem A, Taneja P, Huang NW, Simoncsits A, Susic S, Rahman K, Marusic L, Chen J (1994) Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO Journal 13, 4991–5001.
PubMed |
open url image1

Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences USA 96, 5844–5849.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends in Plant Science 12, 160–168.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato–role of jasmonic acid. Journal of Plant Physiology 163, 297–306.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. The Plant Journal 31, 517–528.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6, 251–264.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yan KH, Liu PF, Tzeng HT, Chang WC, Chou WG, Pan RL (2004) Characterization of DNA end-binding activities in higher plants. Plant Physiology and Biochemistry 42, 617–622.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yoo S, Dynan WS (1998) Characterization of the RNA binding properties of Ku protein. Biochemistry 37, 1336–1343.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zelazowski P, Max EE, Kehry MR, Snapper CM (1997) Regulation of Ku expression in normal murine B cells by stimuli that promote switch recombination. Journal of Immunology 159, 2559–2562. open url image1

Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 2621–2632.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1