Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone

Julie Soukupová A B F , Ladislav Cséfalvay A B , Otmar Urban C , Martina Košvancová C D , Michal Marek C D , Uwe Rascher E and Ladislav Nedbal A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Physiology and Ecology, Department of Biological Dynamics, Institute of Systems Biology and Ecology of the Academy of Sciences CR, Zámek 136, CZ-37333 Nové Hrady, Czech Republic.

B Department of Systems Biology, Institute of Physical Biology of the University of South Bohemia, Zámek 136, CZ-37333 Nové Hrady, Czech Republic.

C Laboratory of Plants Ecological Physiology, Division of Ecosystem Processes, Institute of Systems Biology and Ecology, Poříčí 3b, CZ-60300 Brno, Czech Republic.

D Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Zemědělská 3, CZ-61300 Brno, Czech Republic.

E Institute of Chemistry and Dynamics of the Geosphere, ICG-3: Phytosphere, Research Centre Jülich, D-52425 Jülich, Germany.

F Corresponding author. Email: soukupova@greentech.cz

Functional Plant Biology 35(1) 63-76 https://doi.org/10.1071/FP07158
Submitted: 22 June 2007  Accepted: 29 November 2007   Published: 25 January 2008

Abstract

Remotely sensed passive chlorophyll fluorescence emission has a potential to become one of the major global-scale reporter signals on vegetation performance and stress. In contrast to the actively probed parameters such as maximal (FM′) or minimal (F0′) emission, the steady-state chlorophyll fluorescence, Chl-FS, (FM′ > Chl-FS > F0′) has not been adequately studied. Using fluorescence imaging of leaves, we explored the modulation of Chl-FS by actinic irradiance and by temperature in laboratory, as well as the changes that occurred in three coniferous and broadleaf plant species grown in field. The experiments revealed that Chl-FS is largely insensitive to the incident irradiance once this is above early morning or late evening levels. The characteristic, pre-noon measured Chl-FS correlated positively with the CO2 assimilation rate when measured in field during the year. It was low and stable in the cold winter months and steeply increased with the spring onset. The high values of the characteristic Chl-FS persisted throughout the vegetation season and rapidly decreased in the fall. The seasonal Chl-FS transitions coincided with the last spring frosts or the first fall frosts that persisted for several consecutive nights. The transitions were marked by an elevated variability of the Chl-FS signal. We propose that the signal variability occurring during the transition periods can be used to detect from satellites the beginning and the end of the photosynthetic activity in evergreen canopies of the temperate zone.

Additional keywords: imaging, overwintering plants, photosynthetic activity, Picea, remote sensing, Rhododendron.


Acknowledgements

This work was supported by contracts numbered AV0Z 60870520 (ISBE ASCR), VaV/640/18/03 (ISBE ASCR), 2B06068 (ISBE ASCR) and MSM 6007665808 (IPB USB). We thank Michal Popík, Václav Šlouf and Silvia Svidenská for their valuable contributions during experiments. Our special thank belongs to Professor Govindjee for the critical reading and comments.


References


Adams WW , Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In ‘Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Vol. 19’. (Eds GC Papageorgiou, Govindjee) pp. 583–604. (Springer: Dordrecht, Netherlands)

Adams WW, Winter K, Schreiber U, Schramel P (1990) Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. Plant Physiology 92, 1184–1190.
PubMed |
open url image1

Agati G, Mazzinghi P, Fusi F, Ambrosini I (1995) The F685/F730 chlorophyll fluorescence ratio as a tool in plant physiology: responses to physiological and environmental factors. Journal of Plant Physiology 145, 228–238. open url image1

Agati G, Mazzinghi P, Di Paola ML, Fusi F, Cecchi G (1996) The F685/F730 chlorophyll fluorescence ratio as indicator of chilling stress in plants. Journal of Plant Physiology 148, 384–390. open url image1

Baker NR , Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In ‘Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Vol. 19’. (Eds GC Papageorgiou, Govindjee) pp. 65–82. (Springer: Dordrecht, Netherlands)

Baldini E, Facini O, Nerozzi F, Rossi F, Rotondi A (1997) Leaf characteristics and optical properties of different woody species. Trees – Structure and Function 12, 73–81.
Crossref | GoogleScholarGoogle Scholar | open url image1

Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. Planta 170, 489–504.
Crossref | GoogleScholarGoogle Scholar | open url image1

Carter GA, Theisen AF, Mitchel RJ (1990) Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field. Plant, Cell & Environment 13, 79–83.
Crossref | GoogleScholarGoogle Scholar | open url image1

Carter GA, Jones JH, Mitchell RJ, Brewer CH (1996) Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer. Remote Sensing of Environment 55, 89–92.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cecchi G, Manzzinghi P, Pantani L, Valentini R, Tirelli D, De Angelis P (1994) Remote sensing of chlorophyll a fluorescence of vegetation canopies. 1. Near and far field measurement techniques. Remote Sensing of Environment 47, 18–28.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cerovic ZG, Goulas Y, Gorbunov M, Briantais JM, Camenen L, Moya I (1996) Fluorosensing of water stress in plants. Diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a t-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet and Kalanchoë. Remote Sensing of Environment 58, 311–321.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cifre J, Bota J, Escalona JM, Medrano H, Flexas J (2005) Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agriculture Ecosystems & Environment 106, 159–170.
Crossref | GoogleScholarGoogle Scholar | open url image1

Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal dissipation. New Phytologist 172, 11–21.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Demmig-Adams B , Adams WW , Mattoo AK (2006) ‘Photoprotection, photoinhibition, gene regulation and environment. Advances in photosynthesis and respiration. Vol. 21.’ (Springer: Dordrecht, Netherlands)

Dobrowski SZ, Pushnik JC, Zarco-Tejada PJ, Ustin SL (2005) Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment 97, 403–414.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadial clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ensminger I, Sveshnikov D, Campbell DA, Funk CH, Jansson S, Lloyd J, Shibistova O, Őquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology 10, 995–1008.
Crossref | GoogleScholarGoogle Scholar | open url image1

Evain S, Flexas J, Moya I (2004) A new instrument for passive remote sensing. 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sensing of Environment 91, 175–185.
Crossref | GoogleScholarGoogle Scholar | open url image1

Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulations in grapevines. Plant, Cell & Environment 22, 39–48.
Crossref | GoogleScholarGoogle Scholar | open url image1

Flexas J, Briantais JM, Cerovic ZG, Medrano H, Moya I (2000) Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sensing of Environment 73, 283–297.
Crossref | GoogleScholarGoogle Scholar | open url image1

Flexas J, Escalona JM, Evain S, Gulías J, Moya I, Osmond Ch B, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum 114, 231–240.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Freedman A, Cavender-Bares J, Kebabian PL, Bhaskar R, Scott H, Bazzaz FA (2002) Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate. Photosynthetica 40, 127–132.
Crossref | GoogleScholarGoogle Scholar | open url image1

Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP , et al. (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology 7, 849–882.
Crossref | GoogleScholarGoogle Scholar | open url image1

Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92. open url image1

Gitelson AA, Karnieli A, Goldman N, Yacobi YZ, Mayo M (1996) Chlorophyll estimation in the southeastern Mediterranean using CZCS images: adaptation of an algorithm and its validation. Journal of Marine Systems 9, 283–290.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gitelson AA, Buschmann C, Lichtenthaler HK (1999) The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment 69, 296–302.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goltsev V, Zaharieva I, Lambrev P, Yordanov I, Strasser RJ (2003) Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation. Journal of Theoretical Biology 225, 171–183.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology 22, 131–160. open url image1

Holub P, Seufferheld MJ, Gohlke C, Govindjee , Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reindhardii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. Journal of Microscopy 226, 90–120.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences 355, 1361–1370.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jokela A, Sarjala T, Huttunen S (1998) The structure and hardening status of Scots pine needles at different potassium availability levels. Trees – Structure and Function 12, 490–498.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones HG (1992) ‘Plants and microclimate.’ 2nd edn. (Cambridge University Press: Cambridge)

Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Die Naturwissenschaften 19, 964.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kebabian PL, Theisen AF, Kallelis S, Freedmann A (1999) A passive two-band sensor of sunlight-excited plant fluorescence. The Review of Scientific Instruments 70, 4386–4393.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta 376, 105–115.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kogan F, Gitelson AA, Zakarin E, Spivak L, Lebed L (2003) AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity: calibration and validation. Photogrammetric Engineering and Remote Sensing 69, 899–906. open url image1

Kolber Z, Klimov D, Anayaev G, Rascher U, Berry J, Osmond B (2005) Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynthesis Research 84, 121–129.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Krause G , Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In ‘Chlorophyll a fluorescence: a signature of Photosynthesis. Advances in photosynthesis and respiration. Vol. 19’. (Eds GC Papageorgiou, Govindjee) pp. 463–495. (Springer: Dordrecht, Netherlands)

Larcher W (2003) ‘Physiological plant ecology: ecophysiology and stress physiology of functional groups.’ 4th edn. (Springer: Berlin)

Launiainen S, Rinne J, Pumpanen J, Kulmala L, Kolari P, Keronen P, Siivola E, Pohja T, Hari P, Vesala T (2005) Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Boreal Environment Research 10, 569–588. open url image1

Lichtenthaler HK, Miehé J (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends in Plant Science 2, 316–320.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lichtenthaler HK, Wenzel O, Buschmann C, Gitelson A (1998) Plant stress detection by reflectance and fluorescence. Annals of the New York Academy of Sciences 851, 271–285.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43, 379–393.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lichtenthaler HK, Ač A, Marek MV, Kalina J, Urban O (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry 45, 577–588.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Louis J, Ounis A, Ducruet JM, Evain S, Laurila T , et al. (2005) Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery. Remote Sensing of Environment 96, 37–48.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lundmark T, Bergh J, Strand M, Koppel A (1998) Seasonal variation of maximum photochemical efficiency in boreal Norway spruce stands. Trees – Structure and Function 13, 63–67. open url image1

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51, 659–668.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

McFarlane JC, Watson RD, Theisen AF, Jackson RD, Ehrler WL, Pinter PJ, Idso SB, Reginato RJ (1980) Plant stress detection by remote measurement of fluorescence. Applied Optics 19, 3287–3289. open url image1

Moffatt B, Ewart V, Eastman A (2006) Cold comfort: plant antifreeze proteins. Physiologia Plantarum 126, 5–16.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moya I , Cerovic ZG (2004) Remote sensing of chlorophyll fluorescence: instrumentation and analysis. In ‘Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Vol. 19’. (Eds GC Papageorgiou, Govindjee) pp. 429–445. (Springer: Dordrecht, Netherlands)

Moya L, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas J, Ounis A (2004) A new instrument for passive remote sensing. 1. Measurements of sunlight induced chlorophyll fluorescence. Remote Sensing of Environment 91, 186–197.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nedbal L , Koblížek M (2006) Chlorophyll fluorescence as a reporter on in vivo electron transport and regulation in plants. In ‘Biochemistry and biophysics of chlorophylls’. (Eds B Grimm, R Porra, W Rüdiger, H Scheer) pp. 507–519. (Springer: Dordrecht, Netherlands)

Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M (2000) Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research 66, 3–12.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nedbal L, Březina V, Červený J, Trtílek M (2005a) Photosynthesis in dynamic light: systems biology of unconventional chlorophyll fluorescence transients in Synechocystis sp. PCC6803. Photosynthesis Research 84, 99–106.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nedbal L , Marek M , Trtílek M (2005 b) Remote sensing of vegetation fluorescence can yield estimates of sunlight absorbed inside a complex canopy and sense the on/off status of the photosynthetic machinery. In ‘Remote sensing of vegetation fluorescence’. (Ed. K Fletcher) (CD-ROM) (European Space Agency Publications Division: Noordwijk, Netherlands)

Öquist G, Ögren E (1985) Effects of winter stress on photosynthetic electron transport and energy distribution between the two photosystems of pine as assayed by chlorophyll fluorescence kinetics. Photosynthesis Research 7, 19–30.
Crossref | GoogleScholarGoogle Scholar | open url image1

Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology 54, 329–355.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Öquist G , Gardeström P , Huner NPA (2001) Metabolic changes during cold acclimation and subsequent freezing and thawing. In ‘Conifer cold hardiness’. (Eds FJ Biagras, SJ Colombo) pp. 137–163. (Kluwer Academic Publishers: Dordrecht, Netherlands)

Ottander C, Douglas C, Öquist G (1995) Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197, 176–183.
Crossref | GoogleScholarGoogle Scholar | open url image1

Papageorgiou GC , Govindjee (2004) ‘Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Vol. 19.’ (Springer: Dordrecht, Netherlands)

Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynthesis Research ,
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rascher U , Gioli B , Miglietty F (2008) FLEX – FLuorescence EXplorer: a remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space. In ‘Energy from the sun. Proceedings of the 14th international congress on photosynthesis research 2007’. (Eds JF Allen, B Osmond, JH Golbeck, E Gantt) (Springer: Dodrecht, Netherlands)

Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40, 13–29.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rosema A, Snel JFH, Zahn H, Buurmeijer WF, van Hove LWA (1998) The relation between laser-induced chlorophyll fluorescence and photosynthesis. Remote Sensing of Environment 65, 143–154.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sakai A , Larcher W (1987) ‘Frost survival of plants: responses and adaptation to freezing stress.’ (Springer-Verlag: Berlin)

Schaepman ME (2007) Spectrodirectional remote sensing: from pixels to processes. International Journal of Applied Earth Observation and Geoinformation 9, 204–223.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface, carbon assimilation rate, and plant nitrogen nutrition – a global ecology scaling exercise. Annual Review of Ecology and Systematics 25, 629–660.
Crossref | GoogleScholarGoogle Scholar | open url image1

Šiffel P, Šantrůček J (2005) Diurnal course of photochemical activity of winter-adapted Scots pine at subzero temperatures. Photosynthetica 43, 395–402.
Crossref | GoogleScholarGoogle Scholar | open url image1

Špunda V, Kalina J, Marek MV, Nauš J (1997) Regulation of photochemical efficiency of photosystem 2 in Norway spruce at the beginning of winter and in the following spring. Photosynthetica 33, 91–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Strasser RJ , Tsimilli-Michael M , Srivastava A (2004) Analysis of the chlorophyll transient. In ‘Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Vol. 19’. (Eds GC Papageorgiou, Govindjee) pp. 321–362. (Springer: Dordrecht, Netherlands)

Sutinen ML, Repo T, Sutinen S, Lasarov H, Alvila L, Pakkanen TT (2000) Physiological changes in Pinus sylvestris needles during early spring under sub-arctic conditions. Forest Ecology and Management 135, 217–228.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sutinen MJ , Wisniewski M , Asworth E , Strimbeck R , Palta J (2001) Mechanisms of frost survival and freezing damage in nature. In ‘Conifer cold hardiness’. (Eds FJ Biagras, SJ Colombo) pp. 89–120. (Kluwer Academic Publishers: Dordrecht, Netherlands)

Tanja S, Berninger F, Vesala T, Markkanen T, Hari P , et al. (2003) Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology 9, 1410–1426.
Crossref | GoogleScholarGoogle Scholar | open url image1

Theisen AF, Rock BN, Eckert RT (1994) Detection of changes in steady-state chlorophyll fluorescence in Pinus strobus following short-term ozone exposure. Journal of Plant Physiology 144, 410–419. open url image1

Urban O, Janouš D, Acosta M, Czerný R, Marková I , et al. (2007) Ecophysiological control over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology 13, 157–168.
Crossref | GoogleScholarGoogle Scholar | open url image1

Valentini R, Cecchi G, Mazzinghi P, Mugnozza GS, Agati G, Bazzani M, DeAngelis P, Fusi F, Matteucci G, Raimondi V (1994) Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses. Remote Sensing of Environment 47, 29–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25, 147–150.
Crossref | GoogleScholarGoogle Scholar | open url image1

Verhoeven AS, Adams WW, Demmig-Adams B (1996) Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress. Physiologia Plantarum 96, 567–576.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vivaver W, Binder W, Brooke RC, Lister GR, Toivonen PMA (1989) Assessment of photosynthetic activity of nursery-grown Picea glauca seedlings using an integrating fluorometer to monitor variable chlorophyll fluorescence. Canadian Journal of Forest Research 19, 1478–1482.
Crossref |
open url image1

Vogelmann TC, Han T (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant, Cell & Environment 23, 1303–1311.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant, Cell & Environment 25, 1313–1323.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vogg G, Heim R, Hansen J, Schäfer C, Beck E (1998a) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 204, 193–200.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vogg G, Heim R, Gotschy B, Beck E, Hansen J (1998b) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.). II. Seasonal changes in the fluidity of thylakoid membranes. Planta 204, 201–206.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2000) Chlorophyll fluorescence effects on vegetation apparent reflectance. II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sensing of Environment 74, 596–608.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sensing of Environment 84, 283–294.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zarter CR, Adams WW, Ebbert V, Cuthbertson DJ, Adamska I, Demmig-Adams B (2006a) Winter down-regulation of intrinsic photosynthetic capacity coupled with up-regulation of Elip-like proteins and persistent energy dissipation in a sub-alpine forest. New Phytologist 172, 272–282.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WW (2006b) Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytologist 172, 283–292.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1