Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity

Philippe Etienne A , Marie Desclos A , Lucie Le Gou A , Julie Gombert A , Josette Bonnefoy A , Karine Maurel A , Frédérik Le Dily A , Alain Ourry A and Jean-Christophe Avice A B
+ Author Affiliations
- Author Affiliations

A UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France.

B Corresponding author. Email: jean-christophe.avice@unicaen.fr

Functional Plant Biology 34(10) 895-906 https://doi.org/10.1071/FP07088
Submitted: 13 April 2007  Accepted: 23 July 2007   Published: 13 September 2007

Abstract

Brassica napus L. (oilseed rape) is an important crop plant characterised by low nitrogen (N) use efficiency. This is mainly due to a weak N recycling from leaves that is related to incomplete protein degradation. Assuming that protease inhibitors are involved throughout protein mobilisation, the goal of this study was to determine their role in the control of N mobilisation associated with leaf senescence. Results showed that a 19-kDa polypeptide exhibiting trypsin inhibitor (TI) activity presented an increased gradient from the older to the younger leaves. According to the SAG12/Cab gene expression profile, which is an indicator of leaf senescence, mature leaves of nitrate-deprived plants presented an earlier initiation of senescence and a decrease in protein concentration when compared with nitrate-replete plants. This coincided with disappearance of both TI activity and a reduction in the transcript level of the BnD22 gene (encoding a protein sharing homology with Künitz protease inhibitor). In young leaves of N-deprived plants, initiation of senescence was delayed; soluble protein concentration was maintained while both TI activity and BnD22 transcripts were high. This indicates that in oilseed rape growing under nitrate deprivation, the more efficient N recycling from mature leaves contributes to the maintenance of growth in young leaves. The data suggest a significant role for protease inhibitors in the regulation of proteolytic processes associated with N mobilisation during leaf senescence.

Additional keywords: Brassica napus L., leaf senescence, N recycling, nitrate availability, protease inhibitor, protein mobilisation.


Acknowledgements

The authors thank Ms Marie-Paule Henry for her valuable help in N analysis. The authors also wish to acknowledge Dr Olivier Sordet (Laboratory of Molecular Pharmacology, NIH/NCI, Bethesda, MD, USA) for kind revision of this manuscript. This work was supported by a PhD grant for Marie Desclos from INRA (Institut National de la Recherche Agronomique, France) and the Conseil Régional de Basse-Normandie.


References


Beers EP, Woffenden BJ, Zhao CS (2000) Plant proteolytic enzymes: possible roles during programmed cell death. Plant Molecular Biology 44, 399–415.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamid gel. Electrophoresis 8, 93–99.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bradford MM (1976) A rapid method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Buchanan-Wollaston V (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus (identification of a gene encoding a senescence-specific metallothionein-like protein). Plant Physiology 105, 839–846.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. Journal of Experimental Botany 48, 181–199.
Crossref | GoogleScholarGoogle Scholar | open url image1

Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence-related genes by subtractive hybridization. Plant Molecular Biology 33, 821–834.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cipollini DF, Bergelson J (2000) Environmental and developmental regulation of trypsin inhibitor activity in Brassica napus. Journal of Chemical Ecology 26, 1411–1422.
Crossref | GoogleScholarGoogle Scholar | open url image1

Colnenne C, Meynard JM, Reau R, Justes E, Merrien A (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape. Annals of Botany 81, 311–317.
Crossref | GoogleScholarGoogle Scholar | open url image1

Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR (2003) Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. Journal of Experimental Botany 54, 1045–1056.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dejoux JF, Recous S, Meynard JM, Trinsoutrot I, Leterme P (2000) The fate of nitrogen from winter-frozen rapeseed leaves: mineralization, fluxes to the environment and uptake by rapeseed crop in spring. Plant and Soil 218, 257–272.
Crossref | GoogleScholarGoogle Scholar | open url image1

Downing WL, Mauxion F, Fauvarque MO, Reviron MP, Devienne D, Vartanian N, Giraudat J (1992) A Brassica napus transcript encoding a protein related to the Künitz protease inhibitor family accumulates upon water-stress in leaves, not in seeds. The Plant Journal 2, 685–693.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dreccer MF, Grashoff C, Rabbinge R (1997) Source-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration. Field Crops Research 49, 269–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Feller U (1986) Proteolytic enzymes in relation to leaf senescence. In ‘Plant proteolytic enzymes II’. (Ed. MJ Dalling) p. 49. (CRC Press: Cleveland, OH.)

Gan SS, Amasino RM (1997) Making sense of senescence – molecular genetic regulation and manipulation of leaf senescence. Plant Physiology 113, 313–319.
PubMed |
open url image1

Gombert J, Etienne P, Ourry A, Le Dily F (2006) The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. Journal of Experimental Botany 57, 1949–1956.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiology 119, 375–384.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Guevara MG, Daleo GR, Oliva CR (2001) Purification and characterization of an aspartic protease from potato leaves. Physiologia Plantarum 112, 321–326.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hanfrey C, Fife M, Buchanan-Wollaston V (1996) Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related proteins. Plant Molecular Biology 30, 597–609.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

He YH, Gan SS (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. The Plant Cell 14, 805–815.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidoposis. The Plant Cell 5, 553–564.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horigome D, Satoh H, Itoh N, Mitsunaga K, Oonishi I, Nakagawa A, Uchida A (2007) Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. Journal of Biological Chemistry 282, 6525–6531.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany 53, 927–937.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huang S, Cerny RE, Bhat DS, Brown SM (2001) Cloning of an Arabidopsis patatin-like gene, STURDY by activation T-DNA tagging. Plant Physiology 125, 573–584.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ilami G, Nespoulous C, Huet JC, Vartanian N, Pernollet JC (1997) Characterization of BnD22, a drought-induced protein expressed in Brassica napus leaves. Phytochemistry 45, 1–8.
Crossref | GoogleScholarGoogle Scholar | open url image1

Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends in Plant Science 2, 379–384.
Crossref | GoogleScholarGoogle Scholar | open url image1

Laemmli UK (1970) Cleavage of structural proteins during the heat bacteriophage T4. Nature 227, 680–685.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lim OL, Kim HJ, Nam HG (2007) Leaf senescence. Annual Review of Plant Biology 58, 115–136.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lohman KN, Gan SS, John MC, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiologia Plantarum 92, 322–328.
Crossref | GoogleScholarGoogle Scholar | open url image1

Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211, 510–518.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matile P (1982) Protein degradation. In ‘Nucleic acids and proteins in plants I’. (Eds D Boulter, B Parthier) pp. 169–188. (Springer-Verlag: New York.)

Michaud D (1998) Gel electrophoresis of proteolytic enzymes. Analytica Chimica Acta 372, 173–185.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mosolov VV, Valueva TA (2005) Proteinase inhibitors and their function in plants: a review. Applied Biochemistry and Microbiology 41, 227–246.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56, 2907–2914.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nishio N, Satoh H (1997) A water-soluble chlorophyll protein in cauliflower may be identical to BnD22, a drought-induced, 22 kilodalton protein in rapeseed. Plant Physiology 115, 841–846.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noh YS, Amasino RM (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Molecular Biology 41, 195–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noodén LD, Guiamet JJ, John I (1997) Senescence mechanisms. Physiologia Plantarum 101, 746–753.
Crossref | GoogleScholarGoogle Scholar | open url image1

Noquet C, Avice JC, Rossato L, Beauclair P, Henry MP, Ourry A (2004) Effects of altered source-sink relationships on N allocation and vegetative storage protein accumulation in Brassica napus L. Plant Science 166, 1007–1018.
Crossref | GoogleScholarGoogle Scholar | open url image1

Osaki M, Shirai J, Shinano T, Tadano T (1995) N-15-allocation of (NH4)-N-15N and (NO3)-N-15N to nitrogenous compounds at the vegetative growth stage of potato plants. Soil Science and Plant Nutrition 41, 699–708. open url image1

Pourtau N, Mares M, Purdy S, Quentin N, Ruel A, Wingler A (2004) Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219, 765–772.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reinbothe C, Satoh H, Alcaraz J-P, Reinbothe S (2004) A novel role of water-soluble chlorophyll proteins in the transitory storage of chorophyllide. Plant Physiology 134, 1355–1365.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reviron MP, Vartanian N, Sallantin M, Huet JC, Pernollet JC, De Vienne D (1992) Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiology 100, 1486–1493.
PubMed |
open url image1

Rossato L, Laine P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. Journal of Experimental Botany 52, 1655–1663.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ryan CA (1990) Protease inhibitor in plants: genes for improving defenses against insects and pathogens. Annual Review of Phytopathology 28, 425–449.
Crossref | GoogleScholarGoogle Scholar | open url image1

Satoh H, Nakayama K, Okada M (1998) Molecular cloning and functional expression of a water-soluble chlorophyll protein, a putative carrier of chlorophyll molecules in cauliflower. Journal of Biological Chemistry 273, 30568–30575.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Satoh H, Uchida A, Nakayama K, Okada M (2001) Water-soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant & Cell Physiology 42, 906–911.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schjoerring JK, Bock JGH, Gammelvind L, Jensen CR, Mogensen VO (1995) Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation. Plant and Soil 177, 255–264.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shatters RG, Bausher MG, Hunter WB, Chaparro JX, Dang PM, Niedz RP, Mayer RT, McCollum TG, Sinisterra X (2004) Putative protease inhibitor gene discovery and transcript profiling during fruit development and leaf damage in grapefruit (Citrus paradisi Macf.). Gene 326, 77–86.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sin SF, Chye ML (2004) Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta 219, 1010–1022.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smart CM, Hosken SE, Thomas H, Greaves JA, Blair BG, Schuch W (1995) The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiologia Plantarum 93, 673–682.
Crossref | GoogleScholarGoogle Scholar | open url image1

Srivalli B, Bharti S, Hhanna-Chopra R (2001) Vacuole cysteine proteases and ribulose-1,5-biphosphate carboxylase/oxygenase degradation during monocarpic senescence in cowpea leaves. Photosynthetica 39, 87–93.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sugawara H, Shibuya K, Yoshioka T, Hashiba T, Satoh S (2002) Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? Journal of Experimental Botany 53, 407–413.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thomas H, Stoddart JL (1980) Leaf senescence. Annual Review of Plant Physiology 31, 83–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221, 328–338.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weaver LM, Gan SS, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology 37, 455–469.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yamada K, Matsushima R, Nishimura MI, Hara-Nishimura I (2001) A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiology 127, 1626–1634.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam): a tuber storage protein with trypsin inhibitory activity. Plant Molecular Biology 33, 565–570.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yoshida S (2003) Molecular regulation of leaf senescence. Current Opinion in Plant Biology 6, 79–84.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cellular & Molecular Biology Letters 10, 515–534.
PubMed |
open url image1