Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Nutrient loading of developing seeds

Wen-Hao Zhang A , Yuchan Zhou B E , Katherine E. Dibley B E , Stephen D. Tyerman C , Robert T. Furbank D and John W. Patrick B F
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.

B School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2238, Australia.

C School of Agriculture, Food and Wine, Adelaide University, Waite Campus, PMB #1, Glen Osmond, SA 5064, Australia.

D CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

E These authors contributed equally to this work.

F Corresponding author. Email: john.patrick@newcastle.edu.au

G This paper originates from an International Symposium in Memory of Vincent R. Franceschi, Washington State University, Pullman, Washington, USA, June 2006.

Functional Plant Biology 34(4) 314-331 https://doi.org/10.1071/FP06271
Submitted: 26 October 2006  Accepted: 30 January 2007   Published: 19 April 2007

Abstract

Interest in nutrient loading of seeds is fuelled by its central importance to plant reproductive success and human nutrition. Rates of nutrient loading, imported through the phloem, are regulated by transport and transfer processes located in sources (leaves, stems, reproductive structures), phloem pathway and seed sinks. During the early phases of seed development, most control is likely to be imposed by a low conductive pathway of differentiating phloem cells serving developing seeds. Following the onset of storage product accumulation by seeds, and, depending on nutrient species, dominance of path control gives way to regulation by processes located in sources (nitrogen, sulfur, minor minerals), phloem path (transition elements) or seed sinks (sugars and major mineral elements, such as potassium). Nutrients and accompanying water are imported into maternal seed tissues and unloaded from the conducting sieve elements into an extensive post-phloem symplasmic domain. Nutrients are released from this symplasmic domain into the seed apoplasm by poorly understood membrane transport mechanisms. As seed development progresses, increasing volumes of imported phloem water are recycled back to the parent plant by process(es) yet to be discovered. However, aquaporins concentrated in vascular and surrounding parenchyma cells of legume seed coats could provide a gated pathway of water movement in these tissues. Filial cells, abutting the maternal tissues, take up nutrients from the seed apoplasm by membrane proteins that include sucrose and amino acid/H+ symporters functioning in parallel with non-selective cation channels. Filial demand for nutrients, that comprise the major osmotic species, is integrated with their release and phloem import by a turgor-homeostat mechanism located in maternal seed tissues. It is speculated that turgors of maternal unloading cells are sensed by the cytoskeleton and transduced by calcium signalling cascades.

Additional keywords: membrane transport, nutrients, phloem transport, remobilisation, seeds, symplasmic transport.


Acknowledgements

This review is dedicated to the memory of Vincent Franceschi, a great friend and colleague who contributed significantly to conceptual advances in understanding nutrient loading of seeds. In particular, he made seminal findings as to the role paraveinal mesophyll play in assimilate partitioning and compartmentation (1983–2000). By a generous sharing of his immense intellect and innovative use of imaging and microtechniques, Vince has provided a continuing legacy that inspires and underpins efforts to discover mechanisms regulating nutrient transport to and within developing seeds. Studies reported from the authors’ laboratories were supported by grants from the Australian Research Council, Natural Science Foundation of China (30570136) and Grain Research and Development Corporation.


References


Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001) VFK1, a Vicia faba K+ channel involved in phloem unloading. The Plant Journal 27, 571–580.
PubMed |
open url image1

Aldape MJ, Elmer AM, Chao WS, Grimes HD (2003) Identification and characterization of a sucrose transporter isolated from the developing cotyledons of soybean. Archives of Biochemistry and Biophysics 409, 243–250.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Alleva K, Niemietz CM, Sutka M, Maurel C, Parisi M, Tyerman SD, Amodeo G (2006) Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. Journal of Experimental Botany 57, 609–621.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Aoki N, Whitfield P, Hoeren F, Scofield G, Newell K, Patrick J, Offler C, Clarke B, Rahman S, Furbank RT (2002) Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Molecular Biology 50, 453–462.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Aoki N, Scofield GN, Wang X-D, Patrick JW, Offler CE, Furbank RT (2004) Expression and localisation analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues. Planta 219, 176–184.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Awazuhara M, Fujiwaa T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Physiologia Plantarum 125, 95–105.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bagnall N, Wang X-D, Scofield GN, Furbank RT, Offler CE, Patrick JW (2000) Sucrose transport-related genes are expressed in both maternal and filial tissues of developing wheat grains. Australian Journal of Plant Physiology 27, 1009–1020. open url image1

Barth I, Meyer S, Sauer N (2003) PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. The Plant Cell 15, 1375–1385.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. The Plant Journal 43, 824–836.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. The Plant Journal 24, 139–145.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Boorer KJ, Loo DDF, Frommer W, Wright EM (1996) Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1. Journal of Biological Chemistry 271, 25139–25144.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source–sink manipulation in wheat, maize and soybean: a quantitative re-appraisal. Field Crops Research 86, 131–146.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bradford KJ (1994) Water stress and the water relations of seed development: a critical review. Crop Science 34, 1–11. open url image1

Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under control of the sucrose gradient and the proton motive force. Journal of Biological Chemistry 280, 21437–21443.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cessna SG, Low PS (2001) Activation of the oxidative burst in aequorin-transformed Nicotiana tabacum cells is mediated by protein kinase- and anion channel-dependent release of Ca2+ from internal stores. Planta V214, 126–134. open url image1

Cessna SG, Chandra S, Low PS (1998) Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. Journal of Biological Chemistry 273, 27286–27291.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chourey PS, Jain M, Li Q-B, Carlson SJ (2006) Genetic control of cell wall invertases in developing endosperm of maize. Planta 223, 159–167.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cram WJ (1984) Manitol transport and suitability as an osmoticum in root cells. Physiologia Plantarum 61, 396–404.
Crossref | GoogleScholarGoogle Scholar | open url image1

Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334–344.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Delú-Filho N, Pirovani CP, Pedra JHF, Matrangolo FSV, Macedo JNA, Fontes EPB (2000) A sucrose binding protein homologue from soybean affects sucrose uptake in suspension-cultured transgenic tobacco cells. Plant Physiology and Biochemistry 38, 353–361.
Crossref | GoogleScholarGoogle Scholar | open url image1

Demidchik V, Davenport RJ, Tester M (2002) Non-selective cation channels in plants. Annual Review of Plant Biology 53, 67–107.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

van Dongen JT, Laan RGW, Wouterlood M, Borstlap AC (2001) Electrodiffusional uptake of organic cations by pea seed coats. Further evidence for poorly selective pores in the plasma membrane of seed coat parenchyma cells. Plant Physiology 126, 1688–1697.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

van Dongen JT, Ammerlaan AMH, Wouterlood M, Van Aelst AC, Borstlap AC (2003) Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Annals of Botany 91, 729–737.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dordas C, Shrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiology 124, 1349–1361.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology 141, 196–207.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Esau K (1965) ‘Vascular differentiation in plants.’ (Holt, Rinehart and Winston: New York)

Evans LT , Wardlaw IF (1996) Wheat. In ‘In photoassimilate distribution in plants and crops. Source–sink relationships’. (Eds E Zamski, AE Schaffer) pp. 501–518. (Marcel Dekker Inc.: New York)

Fenner M (2005) Seed size and chemical composition: the allocation of minerals to seeds and their use in early seedling growth. Botanical Journal of Scotland 56, 163–173. open url image1

Fetter K, van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell 16, 215–228.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fieuw S, Patrick JW (1993) Mechanism of photosynthate efflux from Vicia faba L. seed coats. Journal of Experimental Botany 44, 65–74.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fisher DB, Cash-Clark CE (2000a) Gradients in water potential and turgor pressure along the translocation pathway during grain filling in normally watered and water-stressed wheat plants. Plant Physiology 123, 139–147.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fisher DB, Cash-Clark CE (2000b) Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets. Plant Physiology 123, 125–138.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fisher DB, Wang N (1995) Sucrose concentration gradients along the post-phloem transport pathway in the maternal tissues of developing wheat grains. Plant Physiology 109, 587–592.
PubMed |
open url image1

Fischer WN, Andre B, Rentsch D, Krolkiewicz S, Tegeder M, Brenner ML, Frommer WB (1998) Amino acid transport in plants. Trends in Plant Science 3, 188–195.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fitzgerald MA, Ugalde TD, Anderson JW (2001) Sulfur nutrition affects delivery and metabolism of S in developing endosperms of wheat. Journal of Experimental Botany 52, 1519–1526.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Franceschi VR, Wittenbach VA, Giaquinta RT (1983) Paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. III. Immunohistochemical localization of specific glycopeptides in the vacuole after depodding. Plant Physiology 72, 586–589.
PubMed |
open url image1

Frachisse JM, Thomine S, Colcombet J, Guern J, Barbier-Brygoo H (1999) Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant Physiology 121, 253–262.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Furbank RT, Scofield GN, Hirose T, Wang XD, Patrick JW, Offler CE (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Australian Journal of Plant Physiology 28, 1187–1196. open url image1

Gahrtz M, Schmelzer E, Stolz J, Sauer N (1996) Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development. The Plant Journal 9, 93–100.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J-B, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94, 647–655.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. The Plant Cell 16, S203–S213.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gerbeau P, Guclu J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. The Plant Journal 18, 577–587.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9, 597–603.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grimes HD, Overvoorde PJ, Ripp K, Franceschi VR, Hitz WD (1992) A 62-kD sucrose binding protein is expressed and localized in tissues actively engaged in sucrose transport. The Plant Cell 4, 1561–1574.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grusak MA (1995) Whole-root iron (III)-reductase activity throughout the life cycle iron-grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds. Planta 197, 111–117.
Crossref | GoogleScholarGoogle Scholar | open url image1

van Haelst C, Rothstein TL (1988) Cytochalasin stimulates phosphoinositide metabolism in murine B lymphocytes. Journal of Immunology 140, 1256–1258. open url image1

Hagan ND, Upadhyaya LM, Tabe LM, Higgins TJV (2003) The redistribution of protein sulphur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. The Plant Journal 34, 1–11.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiology 137, 1397–1419.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harrington GN, Franceschi VR, Offler CE, Patrick JW, Tegeder M, Frommer WB, Harper JF, Hitz WD (1997a) Cell specific expression of three genes involved in plasma membrane sucrose transport in developing Vicia faba seed. Protoplasma 197, 160–173.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harrington GN, Nussbaumer Y, Wang X-D, Tegeder M, Franceschi VR, Frommer WB, Patrick JW, Offler CE (1997b) Spatial and temporal expression of sucrose transport-related genes in developing cotyledons of Vicia faba L. Protoplasma 200, 35–50.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harrington GN, Dibley KE, Ritchie RJ, Offler CE, Patrick JW (2005) Hexose uptake by developing cotyledons of Vicia faba: physiological evidence for transporters of differing affinities and specificities. Functional Plant Biology 32, 987–995.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hedrich R, Dietrich P (1996) Plant K+ channels: similarity and diversity. Botanica Acta 109, 94–101. open url image1

Heim U, Wang Q, Kurz T, Borisjuk L, Golombek S , et al. (2001) Expression patterns and subcellular localization of a 52-kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development. Plant Molecular Biology 47, 461–474.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany 51, 2053–2066.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. The Plant Journal 14, 535–544.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hirose T, Imaizumi N, Scofield GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant & Cell Physiology 38, 1389–1396.
PubMed |
open url image1

Hirose T, Endler A, Ohsugi R (1999) Gene expression of enzymes for starch and sucrose metabolism and transport in leaf sheaths of rice (Oryza sativa L.) during the heading period in relation to the sink to source transition. Plant Production Science 2, 178–183. open url image1

Hirose T, Takano M, Terao T (2002) Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant & Cell Physiology 43, 452–459.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280, 918–921.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hocking PJ, Pate JS (1977) Mobilization of minerals to developing seeds of legumes. Annals of Botany 41, 1259–1278. open url image1

Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori H, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. The Plant Journal 36, 366–381.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jahn TP, Moller ALB, Zeuthen T, Holm LM, Klaerke D, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters 574, 31–36.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jenner CF (1985) Transport of tritiated water and 14C-labeled assimilate into grains of wheat: III. Diffusion of THO through the stalk. Australian Journal of Plant Physiology 12, 595–608. open url image1

Jenner CF, Jones GP (1990) Diffusion of water in the wheat grain: nuclear magnetic resonance and radioisotopic methods provide complementary information. Australian Journal of Plant Physiology 17, 107–118. open url image1

Jenner CF, Ugalde TD, Aspinall D (1991) The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology 18, 211–226. open url image1

Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. The Plant Cell 10, 451–459.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

de Jong A, Borstlap AC (2000) A plasma membrane-enriched fraction isolated from the coats of developing pea seeds contains H+-symporters for amino acids and sucrose. Journal of Experimental Botany 51, 1671–1677.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology 126, 1358–1369.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

de Jong AJ, Koerselmann-Kooij JW, Schuurmans JAMJ, Borstlap AC (1996) Characterisation of the uptake of sucrose and glucose by isolated seed coat halves of developing pea seeds. Evidence that a sugar facilitator with diffusional kinetics is involved in seed coat unloading. Planta 199, 486–492.
Crossref | GoogleScholarGoogle Scholar | open url image1

de Jong A, Koerselman-Kooij JW, Schuurmans JAMJ, Borstlap AC (1997) The mechanism of amino acid efflux from seed coats of developing pea seeds as revealed by uptake experiments. Plant Physiology 114, 731–736.
PubMed |
open url image1

Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. The Plant Journal 23, 267–278.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim I, Cho E, Crawfors K, Hempel FD, Zambryski PC (2005) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proceedings of the National Academy of Sciences USA 102, 2227–2231.
Crossref | GoogleScholarGoogle Scholar | open url image1

King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in eveloping canola siliques. Plant Physiology 114, 153–160.
PubMed |
open url image1

Klauer SF, Franceschi VR, Ku MSB, Zhang D (1996) Identification and localization of vegetative storage proteins in legume leaves. American Journal of Botany 83, 1–10.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW (2003) Phloem loading and unloading of sugars and amino acids. Plant, Cell & Environment 26, 37–56.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annual Review of Plant Biology 55, 341–372.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lanfermeijer FC, Oene MA, Borstlap AC (1992) Compartmental analysis of amino-acid release from attached and detached pea seed coats. Planta 187, 75–82.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lansing AJ, Franceschi VR (2000) The paraveinal mesophyll: a specialised path for intermediary transfer of assimilates in legume leaves. Australian Journal of Plant Physiology 27, 757–767. open url image1

Lange K, Brandt U (1996) Calcium storage and release properties of F-actin: evidence for the involvement of F-actin in cellular calcium signalling. FEBS Letters 395, 137–142.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Laszlo JA (1994) Changes in soybean fruit Ca2+ (Sr2+) and K (Rb+) transport ability during seed development. Plant Physiology 104, 937–944.
PubMed |
open url image1

Le Jean M, Schikora A, Mari S, Briat J-F, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nocotianamine seed loading. The Plant Journal 44, 769–782.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liu K, Luan S (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells. The Plant Cell 10, 1957–1970.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211, 833–840.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lopez M, Bousser AS, Sissoeff I, Gaspar M, Lachaise B, Hoarau J, Mahe A (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant & Cell Physiology 44, 1384–1395.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440, 688–691.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Maathuis FJM, Ichida AW, Sanders D, Schroeder JI (1997) Roles of higher plant K+ channels. Plant Physiology 114, 1141–1149.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Marentes E, Grusak MA (1998) Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Science Research 8, 367–375. open url image1

Marten I, Hoth S, Deeken P, Ache P, Ketchum KA, Hedrich R (1999) ATK3, a phloem-localized K+ channel, is blocked by protons. Proceedings of the National Academy of USA 96, 7581–7586.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maurel C, Chrispeels M, Lurin C, Tacnet F, Geelen D, Ripoche P, Guern J (1997) Function and regulation of seed aquaporins. Journal of Experimental Botany 48, 421–430. open url image1

Meyer S, Melzer M, Truernit E, Hummer C, Besenbeck R, Stadler R, Sauer N (2000) AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. The Plant Journal 24, 869–882.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund RD, Sauer N (2004) Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology 134, 684–693.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Miranda M, Borisjuk L, Tewes A, Heim U, Sauer N, Wobus U, Weber H (2001) Amino acid permeases in developing seeds of Vicia faba L.: expression precedes storage protein synthesis and is regulated by amino acid supply. The Plant Journal 28, 61–71.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiology 132, 1950–1960.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Müller-Röber B, Ellenberg J, Porvart N, Willmitzer L, Busch H, Becker D, Dieterich P, Hoth S, Hedrich R (1995) Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. EMBO Journal 14, 2409–2416.
PubMed |
open url image1

Murphy R (1989) Water flow across the sieve tube boundary: estimating turgor and some implications for phloem loading and unloading. IV. Root tips and seed coats. Annals of Botany 63, 571–579. open url image1

Nakamura RL, Mckendree WL, Hirsch RE, Sedbrook JC, Gaber F, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiology 109, 371–374.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Niemietz CN, Tyerman SD (1997) Characterization of water channels in wheat root membrane vesicles. Plant Physiology 115, 561–567.
PubMed |
open url image1

Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Letters 465, 110–114.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Offler CE, Patrick JW (1984) Cellular structures, plasma membrane surface areas and plasmodesmatal frequencies of seed coats of Phaseolus vulgaris L. in relation to photosynthate transfer. Australian Journal of Plant Physiology 11, 79–99. open url image1

Offler CE, Patrick JW (1993) Pathway of photosynthate transfer in the developing seed of Vicia faba L.: a structural assessment of the role of transfer cells in unloading from the seed coat. Journal of Experimental Botany 44, 711–724.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ohto M, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proceedings of the National Academy of Sciences USA 102, 3123–3128.
Crossref | GoogleScholarGoogle Scholar | open url image1

Overvoorde PJ, Frommer WB, Grimes HD (1996) A soybean sucrose binding protein independently mediates nonsaturable sucrose uptake in yeast. The Plant Cell 8, 271–280.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Park JH, Saier MH (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. Journal of Membrane Biology 153, 171–180.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pate JS , Armstrong EL (1996) Pea. In ‘Photoassimilate distribution in plants and crops. Source–sink relationships’. (Eds E Zamski, AE Schaffer) pp. 625–642. (Marcel Dekker Inc.: New York)

Pate JS, Peoples MB, van Bel AJE, Kuo J, Atkins CA (1985) Diurnal water balance of the cowpea fruit. Plant Physiology 77, 148–156.
PubMed |
open url image1

Patrick JW (1994) Turgor-dependent unloading of assimilates from coats of developing legume seed. Assessment of the significance of the phenomenon in the whole plant. Physiologia Plantarum 90, 645–654.
Crossref | GoogleScholarGoogle Scholar | open url image1

Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology 48, 191–222.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Patrick JW, Offler CE (1995) Post-sieve element transport of sucrose in developing seeds. Australian Journal of Plant Physiology 22, 681–702. open url image1

Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. Journal of Experimental Botany 52, 551–564.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Patrick JW, Offler CE, Wang XD (1995) Cellular pathway of photosynthate transport in coats of developing seed of Vicia faba L. and Phaseolus vulgaris L. I. Extent of transport through the coat symplast. Journal of Experimental Botany 46, 35–47.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pearson JN, Rengel Z, Jenner CF, Graham RD (1998) Dynamics of zinc and manganese movement into developing wheat grains. Australian Journal of Plant Physiology 25, 139–144. open url image1

Pedersen SF, Hoffmann EK, Mills JW (2001) The cytoskeleton and cell volume regulation. Comparative Biochemistry and Physiology 130, 385–399.
PubMed |
open url image1

Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS , et al. (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proceedings of the National Academy of Sciences USA 96, 12186–12191.
Crossref | GoogleScholarGoogle Scholar | open url image1

Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression of ferratin in transgenic rice seeds. Planta 222, 225–233.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ripp KG, Viitanen PV, Hitz WD, Franceschi VR (1988) Identification of membrane protein associated with sucrose transport into cells of developing soybean cotyledons. Plant Physiology 88, 1435–1445.
PubMed |
open url image1

Ritchie RJ, Fieuw-Makaroff S, Patrick JW (2003) Sugar retrieval by coats of developing seeds of Phaseolus vulgaris L. and Vicia faba L. Plant & Cell Physiology 44, 163–172.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant, Cell & Environment 26, 103–124.
Crossref | GoogleScholarGoogle Scholar | open url image1

Roberts SK, Tester M (1995) Inward and outward K+ selective currents in the plasma membrane of protoplasts from maize root cortex and stele. The Plant Journal 8, 811–825.
Crossref |
open url image1

Rochat C, Boutin J-P (1991) Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants (Pisum sativum L.). Journal of Experimental Botany 42, 207–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rolletschek H, Hosein F, Miranda M, Heim U, Gotz K-P, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage protein. Plant Physiology 137, 1236–1249.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rosche E, Blackmore D, Tegeder M, Richardson T, Schroeder H, Higgins TJV, Frommer WB, Offler CE, Patrick JW (2002) Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. The Plant Journal 30, 165–175.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ruan Y-L (2005) Recent advances in understanding cotton fibre and seed development. Seed Science Research 15, 269–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. The Plant Cell 13, 47–60.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ruiz JM (2001) Aquaporin and its function in boron uptake. Trends in Plant Science 6, 95.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ruuska SA, Girke T, Benning C, Ohlrooge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. The Plant Cell 14, 1191–1206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiology 135, 2241–2260.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schiltz S, Munier-Lolain N, Jeudy C, Burstin J, Salon C (2005) Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labelling throughout seed filling. Plant Physiology 137, 1463–1473.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schnyder H (1993) The role of carbohydrate storage and redistribution in the source–sink relations of wheat and barley during grain filling – a review. New Phytologist 123, 233–245.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schuurmans JAMJ, Van Dongen JT, Rutjens BPW, Boonman A, Pieterse CMJ, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Molecular Biology 53, 655–667.
Crossref | GoogleScholarGoogle Scholar | open url image1

Scofield GN, Hirose T, Gaudron JA, Upadhyaya NM, Ohsugi R, Furbank RT (2002) Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology 29, 815–826.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sexton PJ, Shibles RM (1999) Activity of ATP sulfurylase in reproductive soybean. Crop Science 39, 131–135. open url image1

Shackel KE, Turner NC (2000) Seed coat cell turgor in chickpea is independent of changes in plant and pod wall water potential. Journal of Experimental Botany 51, 895–900.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stacey G, Koh S, Granger C, Becker JM (2002) Peptide transport in plants. Trends in Plant Science 7, 257–263.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stadler R, Wright KM, Lauterbach C, Amon G, Gahtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. The Plant Journal 41, 319–331.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Staswick PE (1994) Storage proteins of vegetative plant tissues. Annual Review of Plant Physiology and Plant Molecular Biology 45, 303–322.
Crossref | GoogleScholarGoogle Scholar | open url image1

Staswick PE, Zhang Z, Clements TE, Specht JE (2001) Efficient down regulation of the major vegetative storage protein genes in transgenic soybean does not compromise plant productivity. Plant Physiology 127, 1819–1826.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tabe LM, Droux M (2001) Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumualtion of organic sulfur reserves in seed. Plant Physiology 126, 176–187.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tabe LM, Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiology 128, 1137–1148.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tabe LM , Droux M (2003) Sulphate transporters in developing seeds. ComBiol. Conference 143. (Australian Society for Biochemistry and Molecular Biology Inc.: Kent Town, South Australia)

Tabe LM, Hagan N, Higgins TJV (2002) Plasticity of seed protein composition in response to nitrogen and sulfur availability. Current Opinion in Plant Biology 5, 212–217.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tabuchi M, Suglvama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. The Plant Journal 42, 641–651.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takahashi K, Isobe M, Muto S (1997) An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-induced activation of protein kinases in tobacco suspension culture cells. FEBS Letters 401, 202–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishzawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell 15, 1263–1280.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takahashi S, Ishimaru K, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S (2005) Microarray analysis of sink–source transition in rice leaf sheaths. Breeding Science 55, 153–162.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tegeder M, Wang X-D, Frommer WB, Offler CE, Patrick JW (1999) Sucrose transport into developing seeds of Pisum sativum L. The Plant Journal 18, 151–161.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tegeder M, Offler CE, Frommer WB, Patrick JW (2000a) Amino acid transporters are localized to transfer cells of developing pea seeds. Plant Physiology 122, 319–325.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tegeder M, Thomas M, Hetherington L, Wang X-D, Offler CE, Patrick JW (2000b) Genotypic differences in seed growth rates of Phaseolus vulgaris L. – II. Factors contributing to cotyledon sink activity and sink size. Australian Journal of Plant Physiology 27, 119–128. open url image1

Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarizationactivated calcium channels, stimulated by microtubuledepolymerizing drugs in wildtype Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half life in ton 2 mutant cells affected in the organization of cortical microtubules. The Plant Journal 13, 603–610.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thomas M, Hetherington L, Patrick JW (2000) Genotypic differences in seed growth rates of Phaseolus vulgaris L. I. General characteristics, seed coat growth factors and comparative roles of seed coats and cotyledons. Australian Journal of Plant Physiology 27, 109–118. open url image1

Thorne JH (1985) Phloem unloading of C and N assimilates in developing seeds. Annual Review of Plant Physiology 36, 317–343.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221, 328–338.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tomlinson KL, McHugh S, Labbe H, Grainger JL, James LE, Pomcroy KM, Mullin JW, Miller SS, Dennis DT, Miki BLA (2004) Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase. Journal of Experimental Botany 55, 2291–2303.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439, 688–694.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxia stress through gating of aquaporins. Nature 425, 393–397.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell & Environment 25, 173–194.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425, 734–737.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vandeleur R, Niemietz CM, Tilbrook J, Tyerman SD (2005) Roles of aquaporins in root responses to irrigation. Plant and Soil 274, 141–161.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca 2+ liberation during action potential in the giant alga Chara. Journal of General Physiology 118, 11–21.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Walker NA, Patrick JW, Zhang W-H, Fieuw S (1995) Efflux of photosynthate and acid from developing seed coats of Phaseolus vulgaris L.: a chemiosmotic analysis of pump driven efflux. Journal of Experimental Botany 46, 539–549.
Crossref | GoogleScholarGoogle Scholar | open url image1

Walker NA, Zhang W-H, Harrington G, Holdaway N, Patrick JW (2000) Effluxes of solutes from developing seed coats of Phaseolus vulgaris L. and Vicia faba L.: locating the effects of turgor in a coupled chemisosmotic system. Journal of Experimental Botany 51, 1047–1055.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang N, Fisher D (1994) The use of fluorescent tracers to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiology 104, 17–27.
PubMed |
open url image1

Wang N, Fisher DB (1995) Sucrose release into the endosperm cavity of wheat grains apparently occurs by facilitated diffusion across the nucellar cell membranes. Plant Physiology 109, 579–585.
PubMed |
open url image1

Wang X-D, Harrington G, Patrick JW, Offler CE, Fieuw S (1995) Cellular pathway of photosynthate transport in coats of developing seed of Vicia faba L. and Phaseolus vulgaris L. II. Principal cellular site(s) of efflux. Journal of Experimental Botany 46, 49–63.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang Y-F, Fan L-M, Zhang W-Z, Zhang W, Wu W-H (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiology 136, 3892–3904.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Waters BM, Chu H-H, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal homeostasis and loading of metal ions in seeds. Plant Physiology 141, 1446–1458.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weber H, Borisjuk L, Heim U, Sauer N, Wobus U (1997a) A role for sugar transporters during seed development: molecular characterization of a hexose and sucrose carrier in faba bean seeds. The Plant Cell 9, 895–908.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weber H, Borisjuk L, Wobus U (1997b) Sugar import and metabolism during seed development. Trends in Plant Science 2, 169–174.
Crossref | GoogleScholarGoogle Scholar | open url image1

Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annual Review of Plant Biology 56, 253–279.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wegner LH, de Boer AH (1997) Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role of in K+ homeostasis and long distance signalling. Plant Physiology 115, 1707–1719.
PubMed |
open url image1

Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma of barley roots. Plant Physiology 105, 799–813.
PubMed |
open url image1

Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. The Plant Journal 21, 455–467.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U (2003) The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. The Plant Journal 33, 395–411.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

von Wiren N, Klair S, Bansal S, Briat J-F, Khodr H, Shiori T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiology 119, 1107–1114.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolswinkel P (1992) Transport of nutrients into developing seeds: a review of physiological mechanisms. Seed Science Research 2, 59–73. open url image1

Wolswinkel P, Ammerlaan A, Koerselman-Kooij J (1992) Effect of the osmotic environment on K+ and Mg2+ release from the seed coat and cotyledons of developing seeds of Vicia faba and Pisum sativum. Evidence for a stimulation of efflux from the vacuole at high cell turgor. Journal of Experimental Botany 43, 681–693.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytologist 169, 223–236.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ye Q, Muhr J, Steudle E (2005) A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell & Environment 28, 525–535.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. The Plant Cell 5, 1371–1381.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W-H, Atwell BJ, Patrick JW, Walker NA (1996) Turgor-dependent efflux from of assimilate from coats of developing seeds of Phaseolus vulgaris L.: water relations of the cells involved in efflux. Planta 199, 25–33. open url image1

Zhang WH, Walker N, Tyerman S, Patrick J (1997) Mechanisms of solute efflux from seed coats: whole-cell K+ currents in transfer cell protoplasts derived from coats of developing seeds of Vicia faba L. Journal of Experimental Botany 48, 1565–1572. open url image1

Zhang W-H, Walker NA, Tyerman SD, Patrick JW (2000) Fast activation of a time-dependent outward current in protoplasts derived from coats of developing Phaseolus vulgaris seeds. Planta 211, 894–898.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W-H, Skerrett M, Walker NA, Patrick JW, Tyerman SD (2002) Non-selective currents and channels in plasma membranes of protoplasts from coats of developing seeds of bean seeds. Plant Physiology 128, 388–399.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W-H, Walker NA, Tyerman SD, Patrick JW (2004a) Pulsing Cl– channels linked to hypoosmotically-induced turgor regulation in coat cells of developing bean seeds. Journal of Experimental Botany 55, 993–1001.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W-H, Walker NA, Tyerman SD, Patrick JW (2004b) Ca2+-dependent K current in dermal cells of developing bean cotyledons. Plant, Cell & Environment 27, 251–262.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhou JJ, Miller AJ (2000) Comparison of the transport properties of three plant sucrose carriers expressed in Xenopus oocytes. Australian Journal of Plant Physiology 27, 725–732. open url image1

Zhou Y, Qu H, Dibley KE, Offler CE, Patrick JW (2007) A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. The Plant Journal 49, 750–764.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1