Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Desiccation-tolerance specific gene expression in leaf tissue of the resurrection plant Sporobolus stapfianus

Tuan Ngoc Le A B , Cecilia K. Blomstedt A , Jianbo Kuang A C , Jennifer Tenlen A D , Donald F. Gaff A , John D. Hamill A and Alan D. Neale A E
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Monash University, Vic. 3800, Australia.

B Present address: Department of Biology, University of York, PO Box 373 York YO10 5YW, UK.

C Present address: EcoDirections, Level 5/217 George St, Brisbane, Qld 4000, Australia.

D Present address: Priess Laboratory, Fred Hutchinson Cancer Research Centre, Mailstop A3-013, PO Box 19024, Seattle, WA 98109-1024, USA.

E Corresponding author. Email: alan.neale@sci.monash.edu.au

Functional Plant Biology 34(7) 589-600 https://doi.org/10.1071/FP06231
Submitted: 18 September 2006  Accepted: 3 May 2007   Published: 4 July 2007

Abstract

The desiccation tolerant grass Sporobolus stapfianus Gandoger can modulate cellular processes to prevent the imposition of irreversible damage to cellular components by water deficit. The cellular processes conferring this ability are rapidly attenuated by increased water availability. This resurrection plant can quickly restore normal metabolism. Even after loss of more than 95% of its total water content, full rehydration and growth resumption can occur within 24 h. To study the molecular mechanisms of desiccation tolerance in S. stapfianus, a cDNA library constructed from dehydration-stressed leaf tissue, was differentially screened in a manner designed to identify genes with an adaptive role in desiccation tolerance. Further characterisation of four of the genes isolated revealed they are strongly up-regulated by severe dehydration stress and only in desiccation-tolerant tissue, with three of these genes not being expressed at detectable levels in hydrated or dehydrating desiccation-sensitive tissue. The nature of the putative proteins encoded by these genes are suggestive of molecular processes associated with protecting the plant against damage caused by desiccation and include a novel LEA-like protein, and a pore-like protein that may play an important role in peroxisome function during drought stress. A third gene product has similarity to a nuclear-localised protein implicated in chromatin remodelling. In addition, a UDPglucose glucosyltransferase gene has been identified that may play a role in controlling the bioactivity of plant hormones or secondary metabolites during drought stress.

Additional keywords: cellular protection, drought tolerance, gene expression, LEA-like protein, resurrection plant, UDP glucose glucosyltransferase.


Acknowledgements

We thank the Australian Research Council for the financial support (A19230441) which allowed this work to be initiated. T-N. Le was supported by an Australian Postgraduate Award.


References


Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic alignment search tool. Journal of Molecular Biology 215, 403–410.
PubMed |
open url image1

Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proceedings of the National Academy of Sciences USA 93, 13404–13409.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baldi P, Grossi M, Pecchioni N, Vale G, Cattivelli L (1999) High expression of a gene coding for a chloroplastic amino acid-selective channel protein is correlated to cold acclimation in cereals. Plant Molecular Biology 41, 233–243.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiology 127, 1346–1353.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24, 23–58.
Crossref |
open url image1

Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181, 27–34.
Crossref | GoogleScholarGoogle Scholar | open url image1

Blomstedt CK, Gianello RD, Gaff DF, Hamill JD, Neale AD (1998a) Differential gene expression in desiccation-tolerant and desiccation-sensitive tissue of the resurrection grass Sporobolus stapfianus. Australian Journal of Plant Physiology 25, 937–946. open url image1

Blomstedt CK, Gianello RD, Hamill JD, Neale AD, Gaff DF (1998b) Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regulation 24, 153–161.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bölter B, Soll J (2001) Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates? EMBO Journal 20, 935–940.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bowles D, Isayenkova J, Lim E-K, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Current Opinion in Plant Biology 8, 254–263.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bray EA (1997) Plant responses to water deficit. Trends in Plant Science 2, 48–54.
Crossref | GoogleScholarGoogle Scholar | open url image1

Browne J, Tunnacliffe A, Burnell A (2002) Plant desiccation gene found in a nematode. Nature 416, 38.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell A (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryotic Cell 3, 966–975.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc : phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. The Plant Cell 14, 1093–1107.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Collings DA, Harper JDI, Marc J, Overall RL, Mullen RT (2002) Life in the fast lane: actin-based motility of plant peroxisomes. Canadian Journal of Botany 80, 430–441.
Crossref | GoogleScholarGoogle Scholar | open url image1

Curioni PMG, Reidy B, Flura T, Vögeli-Lange R, Nösberger J, Hartwig UA (2000) Increased abundance of MTD1 and MTD2 mRNAs in nodules of decapitated Medicago truncatula. Plant Molecular Biology 44, 477–485.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dure III L (2001) Occurrence of a repeating 11-mer amino acid sequence in diverse organisms. Protein and Peptide Letters 8, 115–122.
Crossref | GoogleScholarGoogle Scholar | open url image1

Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localisations of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300, 1005–1016.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Feng D-F, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25, 351–360.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Feng Q, Zhang Y, Hao P, Wang S, Fu G , et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420, 316–320.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gaff DF, Loveys BR (1993) Abscisic acid levels in drying plants of a resurrection grass. Trans Malaysian Society. Plant Physiology 3, 286–287. open url image1

Gao M-J, Schäfer UA, Parkin IAP, Hegedus DD, Lydiate DJ, Hannoufa A (2003) A novel protein from Brassica napus has a putative KID domain and responds to low temperature. The Plant Journal 33, 1073–1086.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275, 5668–5674.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ghasempour HR, Gaff DF, Williams RPW, Gianello RD (1998) Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses. Plant Growth Regulation 24, 185–191.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ghasempour HR, Anderson EM, Gaff DF (2001) Effects of growth substances on the protoplasmic drought tolerance of leaf cells of the resurrection grass, Sporobolus stapfianus. Australian Journal of Plant Physiology 28, 1115–1120. open url image1

Goyal K, Tsi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state by desiccation in an anhydrobiotic nematode protein. Journal of Biological Chemistry 278, 12977–12984.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goyal K, Walton LJ, Browne JA, Burnell AM, Tunnacliffe A (2005a) Molecular anhydrobiology: identifying molecules implicated in invertebrate anyhdrobiosis. Integrative and Comparative Biology 45, 702–709.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goyal K, Walton LJ, Tunnacliffe A (2005b) LEA proteins prevent protein aggregation due to water stress. The Biochemical Journal 388, 151–157.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grelet J, Benamar A, Teyssier E, Avelange-Macherel M-H, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiology 137, 157–167.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science 6, 431–438.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hofmann K, Stoffel W (1993) TMbase – A database of membrane spanning protein segments. Biological Chemistry Hoppe-Seyler 374, 166. open url image1

Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Sequence 5, 41–49.
PubMed |
open url image1

Jackson RG, Lim E-K, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. Journal of Biological Chemistry 276, 4350–4356.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jones P, Messner B, Nakajima J-L, Schäffner A, Saito K (2003) UGT73C6 and UGT78D1-glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. Journal of Biological Chemistry 278, 43910–43918.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lee B-h, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. The Plant Cell 17, 3155–3175.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lim E-K, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO Journal 23, 2915–2922.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lim E-K, Baldauf S, Li Y, Elias L, Worrall D, Spencer SP, Jackson RG, Taguchi G, Ross J, Bowles DJ (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13, 139–145.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lupas A (1996) Prediction and analysis of coiled-coil structure. Methods in Enzymology 266, 513–525.
PubMed |
open url image1

Martin RC, Mok MC, Habben JE, Mok DWS (2001) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis–zeatin. Proceedings of the National Academy of Sciences USA 98, 5922–5926.
Crossref | GoogleScholarGoogle Scholar | open url image1

Minorsky PV (2002) Peroxisomes: organelles of diverse function. Plant Physiology 130, 517–518.
Crossref | GoogleScholarGoogle Scholar | open url image1

NDong C, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins: molecular characterization and functional analyses. Plant Physiology 129, 1368–1381.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Neale AD, Blomstedt CK, Bronson P, Le TN, Guthridge K, Evans J, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant, Cell & Environment 23, 265–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecology 151, 85–100.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5, 89.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Paquette S, Møller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62, 399–413.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pohlmeyer K, Soll J, Steinkamp T, Hinnah S, Wagner R (1997) Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proceedings of the National Academy of Sciences USA 94, 9504–9509.
Crossref | GoogleScholarGoogle Scholar | open url image1

Poulsen C, Pødenphant L (2002) Expressed sequence tags from the roots and nodule primordia of Lotus japonicus infected with Mesorhizobium loti. Molecular Plant-Microbe Interactions 15, 376–379.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rassow J, Dekker PJT, van Wilpe S, Meijer M, Soll J (1999) The preprotein translocase of the mitochondrial Inner membrane: function and evolution. Journal of Molecular Biology 286, 105–120.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Annals of Applied Biology 146, 239–259.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rinne PLH, Kaikuranta PLM, van der Plas LHW, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209, 377–388.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56–68.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. Plant Molecular Biology 26, 1459–1481.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. The Plant Cell 17, 3141–3154.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 1581–1590.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from Soybean. Evidence of poly (l-proline)-type II structure. Plant Physiology 131, 963–975.
Crossref | l
-proline)-type II structure.&journal=Plant Physiology&volume=131&pages=963-975&publication_year=2003&author=JC%20Cushman&hl=en&doi=10.1104/pp.015891" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Research 29, 1524–1533.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiology 118, 1–8.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characteristics of a supergene family. Trends in Plant Science 5, 380–386.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weber APM, Schwacke R, Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annual Review of Plant Biology 56, 133–164.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4, 52.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoeksha FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilises glasses in vitro. Biochimica et Biophysica Acta 1544, 196–206.
PubMed |
open url image1

Wu G, Robertson AJ, Zheng P, Liu X, Gusta LV (2005) Identification and immunogold localization of a novel bromegrass (Bromus inermis Leyss) peroxisome channel protein induced by ABA, cold and drought stresses, and late embryogenesis. Gene 363, 77–84.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment 25, 131–139.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterisation of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane protein. Plant & Cell Physiology 33, 217–224. open url image1

Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) Histone Deacetylase19 is involved in jasmonic acid and ethylene signalling of pathogen response in Arabidopsis. The Plant Cell 17, 1196–1204.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247–273.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1