Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation

Linda Mtwisha A , Jill M. Farrant A , Wolf Brandt A , Caswell Hlongwane B and George G. Lindsey A C
+ Author Affiliations
- Author Affiliations

A Department of Molecular and Cell Biology, University of Cape Town, Private Bag 7725, Rondebosch, South Africa.

B CSIR Bio/Chemtek, P.O. Box 395, Pretoria, South Africa.

C Corresponding author. Email: George.Lindsey@uct.ac.za

Functional Plant Biology 34(2) 139-149 https://doi.org/10.1071/FP06135
Submitted: 25 May 2006  Accepted: 18 January 2007   Published: 12 February 2007

Abstract

ASP53, a 53 kDa heat soluble protein, was identified as the most abundant protein in the mature seeds of Acacia erioloba E.Mey. Immunocytochemistry showed that ASP53 was present in the vacuoles and cell walls of the axes and cotyledons of mature seeds and disappeared coincident with loss of desiccation tolerance. The sequence of the ASP53 transcript was determined and found to be homologous to the double cupin domain-containing vicilin class of seed storage proteins. Mature seeds survived heating to 60°C and this may be facilitated by the presence of ASP53. Circular dichroism spectroscopy demonstrated that the protein displayed defined secondary structure, which was maintained even at high temperature. ASP53 was found to inhibit all three stages of protein thermal denaturation. ASP53 decreased the rate of loss of alcohol dehydrogenase activity at 55°C, decreased the rate of temperature-dependent loss of secondary structure of haemoglobin and completely inhibited the temperature-dependent aggregation of egg white protein.

Additional keywords: circular dichroism spectroscopy, immunocytochemistry, protection of protein conformation, seed storage protein.


Acknowledgements

GL and JMF acknowledge the support of the National Research Foundation and the UCT Research Fund.


References


Baker JC, Steele C, Dure L (1988) Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Molecular Biology 11, 277–291.
Crossref | GoogleScholarGoogle Scholar | open url image1

Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Molecular Biology 39, 539–549.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Blackman SA, Obendorf RL, Leopold AC (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology 100, 225–230.
PubMed |
open url image1

Blackman SA, Wettlaufer SF, Obendorf RL, Leopold AC (1991) Maturation proteins associated with desiccation tolerance in soybean. Plant Physiology 96, 868–874.
PubMed |
open url image1

Bray EA (1997) Plant responses to water deficit. Trends in Plant Science 2, 48–54.
Crossref | GoogleScholarGoogle Scholar | open url image1

Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytologist 137, 61–74.
Crossref | GoogleScholarGoogle Scholar | open url image1

Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiologia Plantarum 100, 291–296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Close TJ, Kort AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Molecular Biology 13, 95–108.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Delgado LM, O’Connor J, Azorin I, Renau-Piqueras J, Gil LM, Gozalbo D (2001) The glyceraldehydes-3-phosphate dehydrogenase polypeptides encoded by Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147, 411–417.
PubMed |
open url image1

Dunwell JM (1998) Cupins: a new superfamily of functionally diverse proteins that include germins and plant seeds storage proteins. Biotechnology and Genetic Engineering Reviews 15, 1–32.
PubMed |
open url image1

Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Evolution of functional diversity in the cupin superfamily. Trends in Biochemical Sciences 26, 740–746.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiology and Molecular Biology Reviews 64, 153–179.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7–17.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dure L, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Sung ZR (1989) Common amino acid domains among LEA proteins of higher plants. Plant Molecular Biology 12, 475–486.
Crossref | GoogleScholarGoogle Scholar | open url image1

Farrant JM, Berjak P, Pammeneter NW (1985) The effect of drying rate on viability retention of recalcitrant propagules of Avicennia marina. Suid Afrikanse Tydskrift van Plantkundige 51, 432–438. open url image1

Fuzetti F, Schroter KH, Steiner RA, van Noort PI, Pijning T, Rozeboom HJ, Kalk KH, Egmond MR, Dijkstra BW (2002) Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure 10, 259–268.
Crossref | PubMed |
open url image1

Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275, 5668–5674.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harlow LD (1988) ‘Antibodies: a laboratory manual.’ (Cold Spring Harbour Laboratory Press: Cold Spring Harbour, NY)

He B, Bai J, Zhou H (1997) Comparison of inactivation and unfolding of yeast alcohol dehydrogenase during thermal denaturation. International Journal of Biochemistry & Cell Biology 29, 1021–1028.
Crossref | GoogleScholarGoogle Scholar | open url image1

Horbowicz M, Obendorf RL (1994) Seed desiccation tolerance and storability: dependance on flatulence-producing oligosaccharides and cyclitols – review and survey. Seed Science Research 4, 385–406. open url image1

Jeffery CJ (2003) Moonlighting proteins. Trends in Genetics 19, 415–417.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Karreman RJ, Brandt WF, Lindsey GG (2005) The yeast Saccharomyces cerevisiae stress response protein HSP 12 decreases the gel strength of agarose used as a model system for the β-glucan layer of the cell wall. Carbohydrate Polymers 60, 193–198.
Crossref | GoogleScholarGoogle Scholar | open url image1

Karreman RJ, Dague E, Gaboriaud F, Quilès F, Duval JF, Lindsey GG (2007) The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. Biochimica et Biophysica Acta 1774, 131–137.
PubMed |
open url image1

Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochemical and Biophysical Research Communications 348, 56–61.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ko T-P, Ng JD, McPherson A (1993) The three-dimensional structure of canavalin from jack bean (Canavalia ensiformis). Plant Physiology 101, 729–744.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein subunit GPA1 and regulates seed germination and early seedling development. The Plant Cell 15, 1578–1590.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Leprince O, Atherthon NM, Deltour R, Hendry GA (1994) The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L. (an electron paramagnetic resonance study). Plant Physiology 104, 1333–1339.
PubMed |
open url image1

Leprince O, Hendry GAF, McKersie BD (1993) The mechanisms of desiccation tolerance in developing seeds. Seed Science Research 3, 231–246. open url image1

Mansure JJ, Panek AD, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica et Biophysica Acta 1191, 309–316.
PubMed |
open url image1

Motshwene P, Brandt W, Lindsey G (2003) Significant quantities of the glycolytic enzyme phosphoglycerate mutase are present in the cell wall of yeast Saccharomyces cerevisiae. The Biochemical Journal 369, 357–362.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Motshwene P, Karreman R, Kgari G, Brandt W, Lindsey G (2004) The LEA-like protein Hsp12 is present in the cell wall and enhances the barotolerance of the yeast Saccharomyces cerevisiae. The Biochemical Journal 377, 769–774.
PubMed |
open url image1

Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Molecular Biology 37, 513–521.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pardo M, Molina M, Gil C, Nombela C, Ward M, Bains S, Blackstock W (2000) A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21, 3396–3410.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roberts EH (1973) Predicting the storage life of seeds. Seed Science and Technology 1, 499–514. open url image1

Roberts JK, DeSimone NA, Lingle WL, Dure L (1993) Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. The Plant Cell 5, 769–780.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Russouw PS, Farrant J, Brandt W, Maeder D, Lindsey GG (1995) Isolation and characterization of a heat-soluble protein from pea (Pisum sativum) embryos. Seed Science Research 5, 137–144. open url image1

Russouw PS, Farrant JM, Brandt WF, Lindsey GG (1997) The most prevalent protein in a heat-treated extract of pea (Pisum sativum) embryos is a LEA group I protein; its conformation is not affected by exposure to high temperature. Seed Science Research 7, 117–123. open url image1

Sales K, Brandt WF, Rumbak E, Lindsey GG (2000) The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol induced stress. Biochimica et Biophysica Acta 1463, 267–278.
PubMed |
open url image1

Sanger F, Niklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA 74, 5463–5469.
Crossref | GoogleScholarGoogle Scholar | open url image1

Scott P (2000) Resurrection plants and the secrets of eternal leaf. Annals of Botany 85, 159–166.
Crossref | GoogleScholarGoogle Scholar | open url image1

Segarra CI, Casalongué CA, Pinedo CL, Ronchi VP, Conde RD (2003) A germin-like protein of wheat leaf apoplast inhibits serine proteases. Journal of Experimental Botany 54, 1335–1341.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sherwin HW, Farrant J (1996) Differences in rehydration of three desiccation-tolerant angiosperm species. Annals of Botany 78, 703–710.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shutov AD, Baumlein H, Blattner FR, Muntz K (2003) Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution. Journal of Experimental Botany 54, 1645–1654.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Science 14, 2601–2609.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 31–43.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sun WQ, Leopold AC (1993) The glassy state and accelerated aging of soybeans. Physiologia Plantarum 89, 767–774.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vertucci CW , Farrant JM (1995) Acquisition and loss of desiccation tolerance. In ‘Seed development and germination’. (Eds J Kigel, G Galilli) pp. 237–271. (Marcel Dekker Inc.: New York)

Westermeier R , Naven T. (2002) ‘Proteomics in practice: a laboratory manual of proteome analysis.’ (Wiley: New Jersey)

Wilmouth RC, Turnbull JJ, Welford RW, Clifton IJ, Prescott AG, Schofield CJ (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10, 93–103.
Crossref | PubMed |
open url image1

Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends in Plant Science 9, 13–17.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolkers WF, McCready S, Brandt W, Lindsey GG, Hoekstra FA (2001) Isolation and characterisation of a D-7 LEA protein from pollen that stabilises glasses in vitro. Biochimica et Biophysica Acta 1544, 196–206.
PubMed |
open url image1

Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW (2000) Germin is a manganese-containing homohexamer with oxalate oxidase and superoxide disputase actrivities. Nature Structural Biology 7, 1036–1040.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yancey PH (2005) Organic osmolytes as compatible metabolic and counteracting cytoprotectants in high osmolality and other stresses. Journal of Experimental Botany 208, 2819–2830. open url image1